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Specification Styles

Operational Declarative

public boolean repOK () {
  Set<Entry> visited = new HashSet<Entry>();
  visited.add(header);
  Entry current = header;
  while (true) {
    Entry next = current.getNext();
    if (next == null) break;
    if (!visited.add(next)) return false;
    current = next;
  }
  if (visited.size() != size) return false;
  return true ;
}

pred repOK [thiz:List, header: List -> one Node+Null,
            size: List -> one Int, next: Node -> one Node + Null] {
     

(all n: thiz.header.*next | n !in n.^next) 
and

     (# thiz.header.*next = thiz.size)
}

TestEraKorat



  

Cross-usage of automated analysis tools
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Semantics-preserving Translations

pred repOK[thiz_0: List, header_0: List ->one (Node + Null), 
    size_0: List ->one Int, next_0: Node ->one (Node + Null), 
    result_0, result_1: boolean] {

    nodesToVisit_1 = thiz_0.size_0 and 
    current_1 = thiz_0.header_0 and ((lt[thiz_0.size_0, 0] and 
    result_1 = false and current_1 = current_4 and 
    nodesToVisit_1 = nodesToVisit_4 ) or (not   
    lt[thiz_0.size_0,0] and ((current_1 = current_4 and 
    nodesToVisit_1 = nodesToVisit_4 ) or 
    (gt[nodesToVisit_1, 0] and current_1 != Null and 
    nodesToVisit_2 = sub[nodesToVisit_1, 1] and 
    current_2 = current_1.next_0 and ((current_2 = current_4 and 
    nodesToVisit_2 = nodesToVisit_4 ) or (gt[nodesToVisit_2, 0] 
    and current_2 != Null and nodesToVisit_3 =     
    sub[nodesToVisit_2,1] and  current_3 = current_2.next_0 and 
    ((current_3 = current_4 and 
    nodesToVisit_3 = nodesToVisit_4 ) or (gt[nodesToVisit_3, 0] 
    and current_3 != Null and nodesToVisit_4 =   
    sub[nodesToVisit_3, 1] and current_4 =     
    current_3.next_0)))))) 
    and not (gt[nodesToVisit_4, 0] and current_4 != Null ) and 
    ((eq[nodesToVisit_4, 0] and current_4 = Null and 
    result_1 = true) or (not (eq[nodesToVisit_4, 0] and
    current_4 = Null) and result_1 = false))))
}

• The output is inappropriate

• The efficiency of tools sometimes are very dependent on how 
specifications are written

public boolean repOK () {
  Set<Entry> visited = new HashSet<Entry>();
  visited.add(header);
  Entry current = header;
  while (true) {
    Entry next = current.getNext();
    if (next == null) break;
    if (!visited.add(next)) return false;
    current = next;
  }
  if (visited.size() != size) return false;
  return true ;
}

pred repOK [thiz:List, header: List -> one Node+Null,
       size: List -> one Int, next: Node -> one Node + Null] {
     

(all n: thiz.header.*next | n !in n.^next) 
and

     (# thiz.header.*next = thiz.size)
}
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Anatomy of an Evolutionary Algorithm
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● Each chromosome (individual) will represent a candidate specification

● A chromosome is a vector of genes g
0

g
1

g
2

g
3

● A gene can be

thiz.header != Null

true• a boolean constant 

• an atomic formula

• a quantified formula all n : thiz.header.*next : n != Null 

● The specification represented by a chromosome is the conjunction of its genes

C =

spec(C) = g
0 
∧ g

1
 ∧ g

2 
∧ g

3 

Population individuals



  

The initial Chromosomes

● Create a type graph from the data structure definition:

thiz: List
header: List  → one Node+Null
next: Node  → one Node+Null
size: List  → one Int
element: Node  → one Int  

● Create a set of evaluable expressions considering a scope:

List+Null

Int Node+Null

thiz

size

element

header
next

thiz
thiz.size
thiz.header
thiz.header.element
thiz.header.next
thiz.header.next.element
thiz.header.next.next

thiz.header.*next
thiz.header.*next.element

thiz.header != Null

thiz.size = 2

thiz.header.next != Null

all n : thiz.header.*next : n != Null 



  

Genetic Operators

Crossover
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Mutation

C
1 
= g

i

• set to true

• operator replacement

C
1
‘ = true

C
1 
= thiz.header = Null C

1
’
 
= thiz.header != Null

• quantifier replacement

C
1 
= all n: dom : expr C

1
’
 
= some n: dom : expr

• integer addition/substraction

C
1 
= #thiz.header.*next = e C

1
’
 
= #thiz.header.*next+1 = e

• closure operator insertion/elimination

C
1 
= thiz.header.next C

1
’
 
= thiz.header.*next



  

Fitness Function

Φop Φc

● For a chromosome c, assess how close the chromosome specification to the desired 
specification is:

+ -

• The fewer the examples, the better

• The smaller the specification, the better

● The fitness value of c is computed by counting the examples(     and    ) that do not 
satisfy

+ -

Positive examples Negative examples

Φop Φc



  

Evaluation
RQ1 – Is it efficient and worthwhile? 
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Binary trees – Verification in a bounded scenario 

Speed up (w.r.t the operational specification)
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RQ2 – Is it precise ? 

Data Structure Invariant Learned ?

singly linked list ✔

sorted singly linked list ✔

circular linked list ✔

binary trees ✔

heaps ✔

directed acyclic graph (binary) ✔

red-black trees ✔

For red-black trees we are able to learn most of the expected invariant, 
except for the “black height” portion of it.



  

Future work
● Generalize the approach in order to produce a richer set of specifications

● Analyze our approach in other kinds of programs, not just data 
structure representation invariants

● Implement cross usages of analysis tools using our algorithm 



  

Thank you !
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