

An Evolutionary Approach to Translate
Operational Specifications into Declarative

Specifications

Facundo Molina – César Cornejo – Renzo Degiovanni – Germán Regis –
Pablo Castro – Nazareno Aguirre – Marcelo Frias

Department of Computer Science – FCEFQyN
National University of Río Cuarto

Argentina

November - 2016

Motivation

Program Analysis

Program

Specification

Analysis
Tool

Verification

Test
Generation

Fault
Localization

Program
Repair

Output

Specification Styles

Operational Declarative

public boolean repOK () {
 Set<Entry> visited = new HashSet<Entry>();
 visited.add(header);
 Entry current = header;
 while (true) {
 Entry next = current.getNext();
 if (next == null) break;
 if (!visited.add(next)) return false;
 current = next;
 }
 if (visited.size() != size) return false;
 return true ;
}

pred repOK [thiz:List, header: List -> one Node+Null,
 size: List -> one Int, next: Node -> one Node + Null] {

(all n: thiz.header.*next | n !in n.^next)
and

 (# thiz.header.*next = thiz.size)
}

TestEraKorat

Cross-usage of automated analysis tools

Φop

Test
Generation

Fault
Localization

What if we have the specification in just one style?

Φop

Φdecl

Φdecl

Semantics-preserving Translations

pred repOK[thiz_0: List, header_0: List ->one (Node + Null),
 size_0: List ->one Int, next_0: Node ->one (Node + Null),
 result_0, result_1: boolean] {

 nodesToVisit_1 = thiz_0.size_0 and
 current_1 = thiz_0.header_0 and ((lt[thiz_0.size_0, 0] and
 result_1 = false and current_1 = current_4 and
 nodesToVisit_1 = nodesToVisit_4) or (not
 lt[thiz_0.size_0,0] and ((current_1 = current_4 and
 nodesToVisit_1 = nodesToVisit_4) or
 (gt[nodesToVisit_1, 0] and current_1 != Null and
 nodesToVisit_2 = sub[nodesToVisit_1, 1] and
 current_2 = current_1.next_0 and ((current_2 = current_4 and
 nodesToVisit_2 = nodesToVisit_4) or (gt[nodesToVisit_2, 0]
 and current_2 != Null and nodesToVisit_3 =
 sub[nodesToVisit_2,1] and current_3 = current_2.next_0 and
 ((current_3 = current_4 and
 nodesToVisit_3 = nodesToVisit_4) or (gt[nodesToVisit_3, 0]
 and current_3 != Null and nodesToVisit_4 =
 sub[nodesToVisit_3, 1] and current_4 =
 current_3.next_0))))))
 and not (gt[nodesToVisit_4, 0] and current_4 != Null) and
 ((eq[nodesToVisit_4, 0] and current_4 = Null and
 result_1 = true) or (not (eq[nodesToVisit_4, 0] and
 current_4 = Null) and result_1 = false))))
}

• The output is inappropriate

• The efficiency of tools sometimes are very dependent on how
specifications are written

public boolean repOK () {
 Set<Entry> visited = new HashSet<Entry>();
 visited.add(header);
 Entry current = header;
 while (true) {
 Entry next = current.getNext();
 if (next == null) break;
 if (!visited.add(next)) return false;
 current = next;
 }
 if (visited.size() != size) return false;
 return true ;
}

pred repOK [thiz:List, header: List -> one Node+Null,
 size: List -> one Int, next: Node -> one Node + Null] {

(all n: thiz.header.*next | n !in n.^next)
and

 (# thiz.header.*next = thiz.size)
}

An Evolutionary Algorithm for
Learning Declarative Specifications

Φop

Φdecl

Evolution

Suitability
Criteria

Anatomy of an Evolutionary Algorithm

Maximum
Generations?

Genetic Operators

Initial
Population

Evaluation

Best Individual

Selection

Mutation

Crossover

Initial
Population

EvaluationGenetic Operators

Mutation

Crossover
Yes

No

● Each chromosome (individual) will represent a candidate specification

● A chromosome is a vector of genes g
0

g
1

g
2

g
3

● A gene can be

thiz.header != Null

true• a boolean constant

• an atomic formula

• a quantified formula all n : thiz.header.*next : n != Null

● The specification represented by a chromosome is the conjunction of its genes

C =

spec(C) = g
0
∧ g

1
 ∧ g

2
∧ g

3

Population individuals

The initial Chromosomes

● Create a type graph from the data structure definition:

thiz: List
header: List → one Node+Null
next: Node → one Node+Null
size: List → one Int
element: Node → one Int

● Create a set of evaluable expressions considering a scope:

List+Null

Int Node+Null

thiz

size

element

header
next

thiz
thiz.size
thiz.header
thiz.header.element
thiz.header.next
thiz.header.next.element
thiz.header.next.next

thiz.header.*next
thiz.header.*next.element

thiz.header != Null

thiz.size = 2

thiz.header.next != Null

all n : thiz.header.*next : n != Null

Genetic Operators

Crossover

C
1
=

C
2
=

α1 α1

α2 α2

β1

β1β2

β2C
1
’

=

C
2
’

=

Mutation

C
1
= g

i

• set to true

• operator replacement

C
1
‘ = true

C
1
= thiz.header = Null C

1
’

= thiz.header != Null

• quantifier replacement

C
1
= all n: dom : expr C

1
’

= some n: dom : expr

• integer addition/substraction

C
1
= #thiz.header.*next = e C

1
’

= #thiz.header.*next+1 = e

• closure operator insertion/elimination

C
1
= thiz.header.next C

1
’

= thiz.header.*next

Fitness Function

Φop Φc

● For a chromosome c, assess how close the chromosome specification to the desired
specification is:

+ -

• The fewer the examples, the better

• The smaller the specification, the better

● The fitness value of c is computed by counting the examples(and) that do not
satisfy

+ -

Positive examples Negative examples

Φop Φc

Evaluation
RQ1 – Is it efficient and worthwhile?

0

100

200

300

400

500

600

700

800

Singly Linked Sorted List – Verification in a bounded scenario

Total time (seconds)

Scope
0

Operational Relational

5 12 15

Relational + Average
learning time

} Is not scope
 dependent

Binary trees – Verification in a bounded scenario

Speed up (w.r.t the operational specification)

5 7 8 9
0

50

100

150

200

250

300

Singly Linked Sorted List – Verification in a bounded scenario

Speed up (w.r.t the operational specification)

5 12 15 20
0

1

2

3

4

1x

3x 3x

At least
4x

1x

65x

168x

At least
300x

RQ2 – Is it precise ?

Data Structure Invariant Learned ?

singly linked list ✔

sorted singly linked list ✔

circular linked list ✔

binary trees ✔

heaps ✔

directed acyclic graph (binary) ✔

red-black trees ✔

For red-black trees we are able to learn most of the expected invariant,
except for the “black height” portion of it.

Future work
● Generalize the approach in order to produce a richer set of specifications

● Analyze our approach in other kinds of programs, not just data
structure representation invariants

● Implement cross usages of analysis tools using our algorithm

Thank you !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

