From Operational to
Declarative Specifications
using a Genetic Algorithm

Renzo Degiovanni

June, 2018



Program Analysis

spec ()

Motivation

verification

test
program generation
analysis
tool
program
fault repair

localization



Specification formalisms

Operational Declarative
public boolean repOK () { pred repOK |

Set<Entry> visited = new HashSet<Entry>(); thiz:List,

visited.add(header); header: List -> one Node+Null,

Entry current = header; size: List -> one Int,

while (true) { next: Node -> one Node + Null]{
Entry next = current.getNext(); (all n: thiz.header.*next | n !in n. next)
if (next == null) break; and
if (!visited.add(next)) return false; (# thiz.header.*next = thiz.size)
current = next; }

}

if (visited.size() != size) return false;

return true;

Korat TestEra



Cross-usage of automated analysis tools

Test '
Generation

Fault
Localization




Cross-usage of automated analysis tools

!

Test
Generation

—

!

Fault
Localization

e What if we have the specification in just one style?

@ —@®




Approximating an Operational Specification by
Evolving Declarative Specifications

Operational Catalog
specification properties

‘ b1 b3 b5 Bi b

Genetic
Algorithm

g

Declarative
specification



Structure of our Genetic Algorithm

Catalog
properties

O1 P2 O3 Py

Search space

o1 N\ @2
P4
3
Q1 A Ty

P2 N\ "y



Structure of our Genetic Algorithm

Catalog
properties

O1 P2 @3 Py

$

Search space

¢1 N P2
P4
@3 =)
Q1 A Ty
P2 N\ "y

How we represent

candidate specifications
as chromosomes?




* Chromosomes are vectors of {T, F, *} and its size is equal to the number of
properties in the catalog

O1 P2 P3 P4




* Chromosomes are vectors of {T, F, *} and its size is equal to the number of
properties in the catalog

O1 P2 P3 P4

* The specification represented by the chromosome is a conjunction involving
the catalog properties

O1 P2 @3 ¢4

T * F T

O1 N\ P3N\ @4



Structure of our Genetic Algorithm

Catalog
properties

O1 P2 @3 Py

Search space

~
J

61 1 6
2
64

—1 N\ Ty

P2 A =y

k population J




Structure of our Genetic Algorithm

Catalog selection
properties T T * =
P1 P2 P3 P4

$

Search space

~
|/

61 10
2
~¢s = IR
=1 N\ Ty
P2 N~y




Structure of our Genetic Algorithm

Catalog selection f crossover w

s

properties

O1 P2 @3 Py

$

Search space

T T * F

-

~
|/

b 1 6
o
_'¢3 - ] . Qenetic operatory
p1 N\ T4
P2 N\ T4




Structure of our Genetic Algorithm

Catalog selection f crossover w

s

properties

O1 P2 @3 Py

$

Search space

T T * F

=)

)

—

Al
.

\ mutation

~

01 N\ @2
6
_'¢3 - ] . Qenetic operatory
01 A\ TPy
P2 N\ TPy




Structure of our Genetic Algorithm

Catalog selection f crossover w

Propertes
T T = | ° T T F
P1 P2 @3 P4 - T T T
Search space l
mutation

1 N\ P2
P4 * T T ¢+

_'¢3 - « Qenetic operatory

new population
91 A\ P4

P2 N\ 2Py

T T * F

How we evaluate each
candidate specification?




Fitness of Candidate Specitications

* For a chromosome c representing the specification s, assess how close is s to
the desired specification

positive examples negative examples




Fitness of Candidate Specitications

* For a chromosome c representing the specification s, assess how close is s to
the desired specification

positive examples negative examples

* The fitness value of cis computed by counting the positive and negatives
examples:

v/ The fewer the examples, the better

v/ The shorter the specification, the better



Evaluation

* Focused on invariants of data structures of varying complexity starting from a

catalog with common invariant properties

singly linked lists
linear . .
sorted linked lists
structures
circular linked lists
binary trees
n-ary :
(tree-like) binary search trees
structures heaps

binary dags

red black trees

Invariant
found?

v
v
v

AN NI N

23 catalog properties

(a)cyclicity
circularity

size related props.
ordering

28 catalog properties

(a)cyclicity
circularity

size related props.
ordering

disjointness

balance



An interesting found invariant

* Acyclicity expressed as size properties in the Singly Linked Lists case study

thiz.size = # (thiz.header.*next - Null)
and
not (thiz.size = #(thiz.header.*next))



Future Work

* Search for more general specifications patterns to consider in catalogs

* Develop more complex genetic operators



Questions?

Thank you :)



