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Specification formalisms

Operational Declarative
public boolean repOK () { pred repOK |

Set<Entry> visited = new HashSet<Entry>(); thiz:List,

visited.add(header); header: List -> one Node+Null,

Entry current = header; size: List -> one Int,

while (true) { next: Node -> one Node + Null]{
Entry next = current.getNext(); (all n: thiz.header.*next | n !in n. next)
if (next == null) break; and
if (!visited.add(next)) return false; (# thiz.header.*next = thiz.size)
current = next; }

}

if (visited.size() != size) return false;

return true;
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Cross-usage of automated analysis tools
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Cross-usage of automated analysis tools
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Approximating an Operational Specification by
Evolving Declarative Specifications
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Structure of our Genetic Algorithm
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How we represent

candidate specifications
as chromosomes?




* Chromosomes are vectors of {T, F, *} and its size is equal to the number of
properties in the catalog
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* Chromosomes are vectors of {T, F, *} and its size is equal to the number of
properties in the catalog
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* The specification represented by the chromosome is a conjunction involving
the catalog properties
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Structure of our Genetic Algorithm
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Structure of our Genetic Algorithm
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Structure of our Genetic Algorithm
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Structure of our Genetic Algorithm
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How we evaluate each
candidate specification?




Fitness of Candidate Specitications

* For a chromosome c representing the specification s, assess how close is s to
the desired specification

positive examples negative examples




Fitness of Candidate Specitications

* For a chromosome c representing the specification s, assess how close is s to
the desired specification

positive examples negative examples

* The fitness value of cis computed by counting the positive and negatives
examples:

v/ The fewer the examples, the better

v/ The shorter the specification, the better



Evaluation

* Focused on invariants of data structures of varying complexity starting from a

catalog with common invariant properties
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An interesting found invariant

* Acyclicity expressed as size properties in the Singly Linked Lists case study

thiz.size = # (thiz.header.*next - Null)
and
not (thiz.size = #(thiz.header.*next))



Future Work

* Search for more general specifications patterns to consider in catalogs

* Develop more complex genetic operators



Questions?

Thank you :)



