
A Genetic Algorithm for
Goal-Conflict Identification

Facundo Molina
ASE 2018

in collaboration with
Renzo Degiovanni, Germán Regis and Nazareno Aguirre

Early phase in the
RE process

Goals
Goals Goals

Domain Properties

Stakeholders

LTL
formulation

Feasibility
Domain

G1
G2

Infeasible

Feasibility

Feasible

Domain

G1

G2

In which situations the goals
can’t be fulfilled?

Domain

G1

G2

obvious situations

subtle situations
goal-conflicts

Mine Pump Controller
Mine Pump
Controller

 Pump

HighWater

Methane

Mine Pump Controller

Methane and
HighWater

Boundary
Condition

If
Methane,

then not PumpOn

If
HighWater,

then PumpOn

Mine Pump
Controller

 Pump

HighWater

Methane

If PumpOn, then not HighWater
in at most two minutes

Divergences

the goals are divergent w.r.t. the domain iff there exists a
boundary condition BC such that:

Domain
G1

G2

Gn…

(1) logical inconsistency

(2) minimality

(3) non-triviality

BC

Divergencies
(1) logical inconsistency (2) minimality

(3) non-triviality

Domain

G1

G2

Gn

BC
Unsatisfiable

Domain

G1

G2

Gn

BC
Satisfiable

BC 6= ¬(G1 ^ . . . ^Gn)

State of the Art

• Automatically identifying boundary conditions
Pattern based technique [TSE’98].
— restricted to captured patterns.

�(P � �Q) ⇤(R ! ⇤¬S) �(Q � S)

�(P � R)
Achieve-Avoid

�(P � �Q) �(Q � P)

�(P � (¬Q U �¬P))

Retraction1

�(Q � R)�(P � (Q W S))

�((P � R � ¬S) U (P � ¬R � ¬S))

Retraction2

Figure 3: Divergence Patterns from [55].

Domain property: CarsCrossWhenOpenedGate
InformalDef : Cars cross the crossing, only when the gate
is opened.
FormalDef : 2(�(cc) ! ca ^ go)

The tableau for this specification contains 53 nodes and 120
transitions. Our tool computes 5 potential boundary condi-
tions, with only one being a divergence, in 75 seconds. The
identified divergence is the following:

1. 3((¬cc ^ go ^ ta) _ (cc ^ (¬go ^ tc _ go ^ (ta _ tc))))

This boundary condition reveals a few dangerous situations.
A conflict arises if the gate is open when the train is ap-
proaching, and the car has not crossed yet. Other similar
conflicting situation arise when the car is crossing at the
same time as the train is approaching or crossing.

5.2 Comparison with pattern-based techniques
We now compare our technique with the only previous

formal approach to derive boundary conditions, that pre-
sented in [55]. This previous approach requires matching
goals against a set of pre-defined divergence patterns, for
which divergence expressions are provided. In order to an-
swer RQ2, we compare these divergences with those com-
puted by our approach, when fed with the pre-defined pat-
terns described in [55]. Figure 3 summarises the three di-
vergence patterns presented in [55], in which the goals and
domain are specified in LTL.
In the case of the Achieve-Avoid pattern, the generated

tableau contains 34 nodes and 86 transitions, and the follow-
ing potential boundary conditions is produced, from which
conditions 1, 2 and 3 result in divergences:

1. 3(¬P ^ (¬Q ^R ^ S _Q ^ (R _ ¬S))
_P ^ (¬Q ^R _Q ^ (R _ ¬S)))

2. 3(¬P ^ ¬Q ^R ^ ¬S ^�(P _Q _ S))
3. 3(P ^ ¬Q ^ ¬R ^�(¬Q ^R _Q ^ (R _ ¬S)))
4. 3(P ^ 2((P ^ ¬Q ^ ¬R)_

(¬P ^ ¬Q ^ (¬R _ ¬S))_
(P ^ ¬Q ^ ¬R ^�(¬Q ^ ¬R))_
(¬P ^ ¬Q ^R ^ ¬S ^�(¬P ^ ¬Q ^ ¬S))))

The entire process for computing and filtering the bound-
ary conditions takes 38 seconds. Boundary conditions 1–3
are computed for the safety case, while the last condition is
for the liveness goal 2(P ! 3Q). When we compare the
pattern-based derived boundary condition 3(P ^ R) with
those computed with our technique, we observe that the for-
mer implies our boundary condition 1 (but not vice versa).
That is, boundary condition 1 is more general than that de-
rived by the pattern. The mentioned implication has been
verified using a simple LTL satisfiability check (f1 implies f2

i↵ f1 ^ ¬f2 is unsatisfiable). From the point of view of suc-
cinctness, clearly our boundary conditions, computed from
loop-free path conditions in the tableau, are more complex
and less readable than that derived by the pattern.
When applying our technique to the Retraction1 pattern,

the generated tableau contains 12 nodes and 24 transitions,
and the approach computes the following potential boundary
conditions, where 1 and 2 correspond to the safety case, and
3 to the liveness case:

1. 3(¬P ^Q) 2. 3(P ^ ¬Q ^�(¬P ^Q))
3. 3(P ^ 2((¬P _ ¬Q) _ (P ^ ¬Q ^�(¬P _ ¬Q))))

The first two are discarded because they do not satisfy the
minimality condition, while formula 3 is identified as a di-
vergence. The whole boundary condition computation takes
just 2 seconds. Again, our computed boundary condition is
not as succinct as the pattern-based one. And also as in
the previous pattern, our computed boundary condition is
more general than the pattern-based derived one (the pat-
tern based boundary condition implies formula 3).
When applying our technique to the Retraction2 pattern,

the generated tableau contains 14 nodes and 28 transitions,
and the tool computes the following 2 potential boundary
conditions, both of which are divergences:

1. 3((¬P ^Q ^ ¬R) _ (P ^ (¬Q ^ ¬S _Q ^ (¬R _ ¬S))))
2. 3(P ^Q ^ ¬S ^�(¬Q ^ ¬S _Q ^ (¬R _ ¬S)))

The whole divergence computation takes less than 2 sec-
onds. Since this pattern does not consider liveness goals,
both boundary conditions were computed for the safety case
only. As with the previous patterns, formula 1 is implied by
that derived by the Retraction2 pattern, and consequently,
our approach is again more general.
Notice that for the Achieve-Avoid and Retraction2 pat-

terns our approach is able to produce boundary conditions
that are not identified by the patterns. Thus, these char-
acterise additional divergent cases, that can be very useful
to engineers when analysing conflicting situations in goal
specifications. We also observe that there is a significant
performance di↵erence in our approach, when computing
boundary conditions for the first pattern compared to the
last two. This is due to the fact that Achieve-Avoid contains
three LTL formulas, one more that the other patterns, and
more potential boundary conditions are identified (implying
a greater time spent in checking minimality for these).

5.3 An example not captured by patterns
Consider the TCP network protocol, which provides reli-

able in-order delivery of packets in packet based data trans-
mission. For simplification, let us assume that the protocol
can send one packet at a time, i.e., it waits for an acknowl-
edgement (ack) before sending the next packet. Briefly, the
following liveness goals are elicited for this protocol:

Goals: Achieve[DeliveredWhenSend]
InformalDef : Every sent packet is eventually delivered.
ACK cannot occur if the packet was not delivered.
FormalDef : 2(send ! (¬ack U delivered))

Goals: Achieve[ACKWhenDelivered]
InformalDef : Once the packet has been delivered, wait for
the ACK signal before sending a new packet.
FormalDef : 2(delivered ! (¬send U ack))

Notice that this example cannot be matched to any of the
above patterns. Our technique is able to analyse this specifi-

Tableaux based technique [ASE’16]
— very expensive logical manipulation of the
tableau structure.

{⇤� p,⌃¬p}root

⇢
⇤� p⇤,⌃¬p⇤,

�p,�(⇤� p),¬p

�

⇢
p,⇤� p⇤,

�p,�(⇤� p)

�

⇢
⇤� p⇤,⌃¬p⇤,

�p,�(⇤� p),�(⌃¬p)

�

⇢
p,⇤� p⇤,⌃¬p⇤,
�p,�(⇤� p),¬p

� ⇢
p,⇤� p⇤,⌃¬p⇤,

�p,�(⇤� p),�(⌃¬p)

�

{p,⇤� p} {p,⇤� p,⌃¬p}

Genetic

Algorithm

Our Proposal

Domain

Goals

BC 1

LTL
specification

BC 2

BC n
…

LTL Satisfiability Checking

Genetic Algorithm
Initial Population

Evaluation

Crossover

Mutation

Selection

Stop
Criterion?

No

Yes

Genetic
Operators

Solutions

Divergencies
(1) logical inconsistency (2) minimality

(3) non-triviality

Domain

G1

G2

Gn

BC
Unsatisfiable

Domain

G1

G2

Gn

BC
Satisfiable

BC 6= ¬(G1 ^ . . . ^Gn)

Search Space
⇤(p ! ¬q) ⌃(r ^ s)
(p _ q) U ¬r

LTL SAT
checks

Syntactical
alterations
⇤(p ! ¬q)

⇤(p ^ ¬q)

Initial Population
• All sub-formulas, and their negations, computed

from the domain properties and the goals.

⇤(p ! ¬q)
Goal

Sub-formulas

⇤(p ! ¬q)
¬⇤(p ! ¬q)

p ! ¬q ¬(p ! ¬q)
p ¬q ¬pq

Negations

initial population

Genetic Operators

p ¬

q

Crossover

c1

c2

c01

U
p U¬q

!

p

c1

p ¬

q

U

p

⇤

^

q

c2

binary combination sub formula replacement

c01

p ! ⇤(¬q)

Genetic Operators
Mutation

c01

unary op. replacement binary op. replacementatomic replacement

c1

p

^

qr

p

⇤

^

q

c01c1

⌃p ¬

q

^ c01c1

_

Fitness Function

logical inconsistency minimality non-triviality

Let be a candidate boundary condition'c

formula size
penalty

li('c) =

8
<

:
1 if {Dom,'c,

V
1in

Gi} |= false

0 otherwise

min('c, Gi) =

8
<

:

1

|G| if {Dom,'c,
V
j 6=i

Gj} 6|= false

0 otherwise

nt('c) =

(
0.5 if 'c 6= ¬(G1 ^ . . . ^Gn)

0 otherwise the shorter,
the better

f('c) = li('c) +

|G|X

i=1

min('c, Gi) + nt('c) +
1

#'c

Evaluation

RQ1 How effective and efficient is our approach to identify
boundary conditions in requirement specifications?

RQ2 Is our approach able to identify boundary conditions that
cannot be derived by related techniques?

http://dc.exa.unrc.edu.ar/staff/rdegiovanni/ase2018.html  
The tool: JGAP, LTL2Buchi, and aalta LTL solver.

Evaluation
Case Study Pattern-based Tableaux-based Genetic Algorithm

Achieve-Avoid 1 4 21
Retraction 1 1 1 27
Retraction 2 1 1 22

RailRoadCrossingSystem - 1 16
MinePump - 2 18

ATM - 4 10
Elevator - 1 7

TCP protocol - 2 8
Telephone - 1 24

London Ambulance System - 1 84
Simple Arbiter - TO 15

Prioritized Protocol - TO 13
Round Robin Arbiter - TO 37

Load Balancer - TO 3
Lift Controller - TO 3

AMBA - TO 2

Pattern-based Tableaux-based Genetic
Algorithm

scalability

readability

applicability

completeness

Summary

Applicability and Usability

Control Synthesis Problem

Domain

GoalsController |=

✔ realizable
x unrealizable

Can boundary conditions
explain why the specifications are

unrealizable?

?

Applicability and Usability
Mine Pump Controller

Controller |=If PumpOn, then not
HighWater in at

most two minutes

If
Methane,

then not PumpOn

If
HighWater,

then PumpOn

Methane and
HighWater¬

This boundary condition gives one possible
cause of unrealizability.

?

Remarks

• Novel application of genetic algorithms in the
context of software engineering

• More general and scalable automated technique
for boundary condition computation

• Enables the application of boundary conditions
for requirements engineering problems with
increased demands of scalability

Thanks

Questions?

Evaluation (with spec sizes)
Case Study Spec size Pattern-based Tableaux-based Genetic

Algorithm
Achieve-Avoid 3 1 4 21
Retraction 1 2 1 1 27
Retraction 2 2 1 1 22

RailRoadCrossingSystem 4 - 1 16
MinePump 3 - 2 18

ATM 3 - 4 10
Elevator 2 - 1 7

TCP protocol 2 - 2 8
Telephone 5 - 1 24

London Ambulance System 5 - 1 84
Simple Arbiter 7 - TO 15

Prioritized Protocol 7 - TO 13
Round Robin Arbiter 9 - TO 37

Load Balancer 11 - TO 3
Lift Controller 21 - TO 3

AMBA 27 - TO 2

Time Comparison (sec.)
Case Study Pattern-based Tableaux-based Genetic Algorithm

Achieve-Avoid 0 2 5
Retraction 1 0 0 17
Retraction 2 0 0 16

RailRoadCrossingSystem - 1 17
MinePump - 9 7

ATM - 10 7
Elevator - 0 0

TCP protocol - 1 10
Telephone - 5 53

London Ambulance System - 5 8491
Simple Arbiter - TO 406

Prioritized Protocol - TO 8770
Round Robin Arbiter - TO 152

Load Balancer - TO 6578
Lift Controller - TO 2853

AMBA - TO 7541

Genetic Algorithm Configuration
Case Study Spec size Pop size Chrom size Generations

Achieve-Avoid 3 100 20 50
Retraction 1 2 100 20 50
Retraction 2 2 100 20 50

RailRoadCrossingSyste
m

4 100 20 50
MinePump 3 100 20 50

ATM 3 100 20 50
Elevator 2 100 20 50

TCP protocol 2 100 20 50
Telephone 5 500 50 50

London Ambulance
System

5 200 50 50
Simple Arbiter 7 100 50 50

Prioritized Protocol 7 100 50 50
Round Robin Arbiter 9 100 20 50

Load Balancer 11 200 50 50
Lift Controller 21 100 50 50

AMBA 27 100 50 50

