A Genetic Algorithm for Goal-Conflict Identification

Facundo Molina ASE 2018

in collaboration with Renzo Degiovanni, Germán Regis and Nazareno Aguirre

Early phase in the RE process

Domain Properties

Feasibility

Domain

Infeasible

Feasibility

Domain

Feasible

In which situations the goals can't be fulfilled?

obvious situations

subtle situations goal-conflicts

Domain

Mine Pump Controller

Mine Pump Controller

Mine Pump Controller

Mine Pump Controller

If **PumpOn**, then **not HighWater** in at most two minutes

Methane, then not PumpOn

Boundary **C**ondition

Methane and HighWater

Domain

G1

the goals are **divergent** w.r.t. the domain iff there exists a **boundary condition BC** such that:

(1) logical inconsistency

(2) minimality

(3) non-triviality

State of the Art

Automatically identifying boundary conditions

Pattern based technique [TSE'98]. - restricted to captured patterns.

Tableaux based technique [ASE'16] - very expensive logical manipulation of the tableau structure.

LTL specification

Domain

Our Proposal

LTL Satisfiability Checking

Search Space $\begin{array}{c} \Box(p \to \neg q) \\ (p \lor q) \mathcal{U} \neg r \end{array} (r \land s)$

Syntactical alterations $\Box(p \to \neg q)$ $\Box(p \land$ $\neg q$)

Mutation

Crossover

Genetic Operators

Genetic Algorithm

Initial Population

Stop Criterion?

No

Selection

Initial Population

from the domain properties and the goals.

Goal

 $\Box(p \to \neg q)$

• All sub-formulas, and their negations, computed

initial population

binary combination

Genetic Operators

Crossover

atomic replacement

 e_1

 \mathcal{D}

Genetic Operators

Mutation

unary op. replacement

Q

binary op. replacement

Let φ_c be a candidate boundary condition

$f(\varphi_c) = li(\varphi_c) + \sum_{i=1}^{|G|} min(\varphi_c, G_i) + nt(\varphi_c) + \frac{1}{\#\varphi_c}$

logical inconsistency

 $li(\varphi_c) = \begin{cases} 1 & \text{if} \\ 0 & q \end{cases} \min(\varphi_c, G_i) = \begin{cases} \frac{1}{|G|} & nt(\varphi_c) = \begin{cases} 0.5 & \text{if } \varphi_c \neq \neg(G_1 \land \ldots \land G_n) \\ 0 & \text{otherwise} \text{ the shorter,} \end{cases}$ the hetter

Fitness Function

minimality

non-triviality

formula size penalty

Evaluation

RQ1 How effective and efficient is our approach to identify boundary conditions in requirement specifications?

RQ2 Is our approach able to identify boundary conditions that cannot be derived by related techniques?

http://dc.exa.unrc.edu.ar/staff/rdegiovanni/ase2018.html The tool: JGAP, LTL2Buchi, and aalta LTL solver.

Evaluation

Case Study	Pattern-based	Tableaux-based	Genetic Algorithm
Achieve-Avoid	1	4	21
Retraction 1			27
Retraction 2			22
RailRoadCrossingSystem			16
MinePump		2	18
ATM		4	10
Elevator			7
TCP protocol		2	8
Telephone			24
London Ambulance System			84
Simple Arbiter		ΤΟ	15
Prioritized Protocol		ΤΟ	13
Round Robin Arbiter		ΤΟ	37
Load Balancer		ТО	3
Lift Controller		ΤΟ	3
AMBA			2

Summary

Pattern-based

scalability

readability

applicability

completeness

Tableaux-based

Genetic Algorithm

Applicability and Usability

Control Syr

Domain Cont

realizable unrealizable

Control Synthesis Problem

Can *boundary conditions* **explain** why the specifications are **unrealizable**?

Applicability and Usability

C

If **PumpOn**, then **not** HighWater in at most two minutes

> Methane and HighWater

Mine Pump Controller

This boundary condition gives one possible cause of unrealizability.

Remarks

- Novel application of genetic algorithms in the context of software engineering
- for boundary condition computation
- increased demands of scalability

More general and scalable automated technique

 Enables the application of boundary conditions for requirements engineering problems with

Questions?

Thanks

Evaluation (with spec sizes)

Case Study

Spec size

Achieve-Avoid	3		4	21
Retraction 1	2	1		27
Retraction 2	2		1	22
RailRoadCrossingSystem	4			16
MinePump	3		2	18
ATM	3		4	10
Elevator	2			7
TCP protocol	2		2	8
Telephone	5			24
London Ambulance System	5			84
Simple Arbiter	7		TO	15
Prioritized Protocol	7		TO	13
Round Robin Arbiter	9		TO	37
Load Balancer	11		TO	3
Lift Controller	21		TO	3
AMBA	27		ΤΟ	2

Pattern-based Tableaux-based

Genetic Algorithm

Time Comparison (sec.)

Case Study

Pattern-based

Achieve-Avoid	0	2	5
Retraction 1	0	0	17
Retraction 2	0	0	16
RailRoadCrossingSystem			17
MinePump		9	7
ATM		10	7
Elevator		0	0
TCP protocol			10
Telephone		5	53
London Ambulance System		5	8491
Simple Arbiter	-	TO	406
Prioritized Protocol		TO	8770
Round Robin Arbiter		TO	152
Load Balancer		TO	6578
Lift Controller		ΤΟ	2853
AMBA			7541

Tableaux-based

Genetic Algorithm

Genetic Algorithm Configuration

Case Study	Spec size	Pop size	Chrom size	Generations
Achieve-Avoid	3	100	20	50
Retraction 1	2	100	20	50
Retraction 2	2	100	20	50
RailRoadCrossingSyste	4	100	20	50
MinePump	3	100	20	50
ATM	3	100	20	50
Elevator	2	100	20	50
TCP protocol	2	100	20	50
Telephone	5	500	50	50
London Ambulance	5	200	50	50
Simple Arbiter	7	100	50	50
Prioritized Protocol	7	100	50	50
Round Robin Arbiter	9	100	20	50
Load Balancer	The second second	200	50	50
Lift Controller	21	100	50	50
AMBA	27	100	50	50