Facundo Molina

Department of Computing, University of Rio Cuarto, Argentina
CONICET, Argentina

in collaboration with Marcelo d’Amorim and Nazareno Aguirre

[[~
[| [~

DL (o) XD &
-
—

CONICET
M 2=

[
\—
N
r R ' ' '

Cieer Coen oer

UNIVERSIDADE

FEDERAL
DE PERNAMBUCQ

%

5\

Class Specifications

An Automated Analysis Scenario

improved analysis in the
presence of specifications

unfortunately, specifications
are seldom available

(This illustrates the relevance of the oracle problem)

Approaches to the Oracle Problem

AVL {
N —) —)

}

Manual specification

Analyze software crashes or
general software faults
Derive specifications from
existing software elements

4 Specification)

Specified oracles

Derived oracles
_ Dervedoracies

//f/*@

@ invariant (\forall Node n;

//’——@———krEuthfrUUtT—NUdET—TEft—¢—rTght%.has(n) implies
I \reach(n.right, Node, right + |left).has(n) &&

try I \reach(n.left, Node, left + right).has(n));

oo @*
\l¥catcﬁ (NullPointerException e) {

' AVL = AVL 7 Y

J

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The Oracle Problem in Software Testing: A Survey. TSE 2015

Specification Inference

AVL { - K

assert(x > 0)
} spec

inference assert(x <= y)
tool Q

f ‘s f ‘d f e

executions

Infer a spec capturing the current program behavior

Applications of Inferred Specs

sther implementations

P(x) { P1(x){

B . assert(x > O)

What doe< * Does these implem: Is the original
under anc respect the san.. behavior preserved?

* o*
AR
.
03
.
.
.
.
*
.
.
*
.
.
.
.
*
.
.
*
03
.
*
.
.
03
.
*
3
o
.

.
.
.
3
.
.
*
*
.
*
.
*
.
.
.
.
.
3
.
.
*
*
.
.
.
*
.
.
.
o*
.

o

w a7
Daikon* '% spec ()
Regression Differential Program Program Fault
Testing Testing Comprehension Repair Localization

* Michael D. Ernst et al. The Daikon System for Dynamic Detection of Likely Invariants. SCP 2007.

Dynamic Invariant Detection (in a nutshell)

P(x)({ Test

Suite
} = n
Candidate assertions not
falsified by the test suite
Candidate . Likel
, Daikon % , >y
Assertions invariants
Can be manually Simple arithmetic/ Typically reports false positives
extended logical expressions and redundant assertions.
a) a)
A Limited Weak
Expressiveness Precision
_ y, _ y,

Michael D. Ernst et al. The Daikon System for Dynamic Detection of Likely Invariants. SCP 2007.

Specification Inference Techniques

Daikon GAssert EvoSpex

I, I, X

@ 8@ @
technique , . L
. . co-evolutionary single-objective
dynamic analysis . . .
algorithm evolutionary algorithm
§ i . w
assertion a e b / a; -«(: . x =0, y = 3
strengthening | o > <
2 cohe,setlloar | RAFGARINE WEIG-T);
approach = e b Y x=0,y="2
. jé(N /
ad-hoc template based approach code mutation state mutation

assertion 99@999 : 0000006
language @ EXOR . IMPLIES
@

IMPLIES ¥ EQUIV REACH . EXISTS J FORALL

CStandard (extensible)) CArithmetic/Logical) CNavigationaI/Quantification)

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezze. Evolutionary Improvement of Assertion Oracles. FSE 2020

Facundo Molina, Pablo Ponzio, Nazareno Aguirre and Marcelo F. Frias. EvoSpex: An Evolutionary Algorithm for Learning Postconditions. ICSE 2021

Improvement over Dynamic Invariant Detection

Expressiveness

Precision

Daikon

Standard Assertion Templates

o a, o,
o Q
a,, o
% o a, X

Can we improve Daikon to

overcome the above limitations?

Evolutionary Approaches

Assertion Search Space

Guided exploration of

a1— 012 a larger search space
-
Q o Report less and
& & stronger assertions

Evolutionary approaches
are expensive

Assertion languages that are difficult to
adapt to support further assertions

iImproving Dynamic Invariant Detection

P(x){ Test
Suite

Can we more conveniently extend } Can we reduce the reported

the set of candidate assertions? assertions to the most relevant?

Likel
ety Selector @
invariants {}

Candidate
Producer @ ,
.@. Assertions

Michael D. Ernst et al. The Daikon System for Dynamic Detection of Likely Invariants. SCP 2007.

Fuzzing Class Specifications

SpecFuzzer

Assertion

grammar es Suite
“““““““““ }
““““““““““““ ;
A
Assel‘tion Candidate Likely Assertion
Assertions Daikon @ Invariants Sel @
Fuzzer O elector 1}
Relevant
Assertions

Remove the need of manually specifying new assertions

Report only the assertions that are more relevant

The Assertion Fuzzer

Base Assertion Grammar

(FuzzedSpec) ::= (QuantifiedExpr) {BooleanExpr)
(QuantifiedExpr) ::= {Quantifier) (Typed Var) “:’ {BooleanExpr)
(Quantifier) == ‘all’ | ‘exists’
(BooleanExpr) ::= (NumCmpExpr) | (LogicCmpExpr) |
(MembershipExpr) | '!" (BooleanExpr)
(NumCmpExpr) == (NumExpr) {NumCmpOp) (NumExpr)
| (NumExpr) {(NumCmpOp) {(NumExpr) {NumBinOp)
{NumExp
(NumExpr) = W
(LogicCmpExpr)ge{BooleanExpr) (LogicOp) (NumCmpExpr)
g (LogicOp) {(BoolVar))’ (LogicOp)

{Num vy o A

| °C (Numt‘mpExpr " (LogicOp) ' (NumCmpExpr))’
(MembershipExpr) := \® as @)
(NumCmpOp) == =="|"I= < |<="| 5%

(NumBinOp) ::= ‘+" | =" |'"**| /" | ‘%’
(LogicOp) :== "||"| "xor’ | '==>"| '<==>’

{NumConst)

Can be straightforwardly adapted

Target Class

int x, y;

\J

//Bublic class C {\\

boolean b, c;
Set<Integer> s;

J

Assertion
Fuzzer

1%

J

Candidate Assertions

this.x > this.y * -1 this.y >= 0 this.x > 0 -> this.y < 0
this.x > 0
this.x % this.y > 0 this.c <=> this.b
this.x >= this.y this.b <=> (this.x |= this.y)

this.b <=> (this.x == this.y)
this.x + this.y > 1

this.b Il this.x > this.y
this.x > this.y this.b -> (this.x < this.y)
this.x < this.y + 1 exists n : reach(this.header, Node, next) : n.value > 0

forall n : reach(this.header, Node, next) : n.value < n.next.value

this.x < this.y

Gxists n : reach(this.header, Node, next) : b -> n.value < 0 J

Assertions fuzzing

The Assertion Selector

Target Class f Mutants
ablic class C\{ public class C {\\\
}
} &
—)

The assertions are .
grouped according to Likely Assertion c.’_ a1 las - A unique assertion for each
the mutants they Kkill Invariants Selector -@- partition is reported
4 N)
a3
q
My Mo M
&%, Y4
Assertions killing the same
set of mutants are s Qg My M5
considered equivalent M6
@7
n X7 M’? Mm
\Likely Invariants) U Mutants)
Assertions that do not getMin(a, b)
kill any mutant are ---
considered irrelevant |
(a == result) or (a != result)

" (a == b) implies (b <= result)

Mutants

fpublic class C {\\
* }... J&
——

Likely ﬂ Mutation-based # . . o
Invariants v

Selectlon
- \
(079

M
X7 M7

_Likely Invariants) KMutants

Experimental Setup

Is grammar-based fuzzing effective at

generating relevant assertions?

\
Assertion Candidate
Fuzzer % Assertions
Likely
Daikon % Invariants
Relevant Assertion @
_ SpecFuzzer Assertions Selector '@'

How does SpecFuzzer compare Is the mutation-based selector successful for

with alternative techniques? removing redundant/irrelevant assertions?

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezze. Evolutionary Improvement of Assertion Oracles. FSE 2020

Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. EvoSpex: An Evolutionary Algorithm for Learning Postconditions. ICSE 2021.

Effectiveness ot Grammar-based Fuzzing

Assertion
Fuzzer

%+

Detected: 40

The assertion fuzzer allowed us to detect

61% of the ground truth assertions.

Performance of the Assertion Selector

-~
Assertion Assertion
+ -
Fuzzer 0} Selector 1o
_
Detected: 40 Detected: 34
spec () spec () spec () spec ()
spec () spec () e S

The Assertion Selector reduced the reported assertions by 95%,

allowing us to discover 52% of the ground truth assertions.

Performance of the Assertion Selector

StackAr.pop
top

B Assertion Fuzzer
B Assertion Selector

theArray | 2 | 5 | 1 |null assert (theArray[old(top)] == null)

No mutant modifies the null value
after the pop array update

Angle.getTurn

crossproduct = Math.sin(angZ2 - angl); assert(abs(result) <= 1)
1f (crossproduct > 0)

return 1;
1f (crossproduct < 0) No mutant makes the method return a
return -1;
. .) value other than 1, -1 or O
Discovered Assertions
return 0;

The effectiveness of the Assertion Selector may be

iImproved considering further mutation operators

SpecFuzzer vs Evolutionary Approaches

‘ SpecFuzzer

© Ghssert SpecFuzzer missed 1
© Evospex assertion produced by GAssert
SpecFuzzer missed 8 assertions
produced by EvoSpex
GAssert - 27% EvoSpex - 38% SpecFuzzer - 52%

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezze. Evolutionary Improvement of Assertion Oracles. FSE 2020

Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. EvoSpex: An Evolutionary Algorithm for Learning Postconditions. ICSE 2021.

Remarks

4 The Oracle Problem is a relevant problem in Software Engineering.

4+ SpecFuzzer uses grammar-based fuzzing and mutation-based selection to effectively improve
dynamic invariant detection.

4+ Specification Inference can still be improved.

Scalability Expressiveness Precision

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The Oracle Problem in Software Testing: A Survey. TSE 2015

