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Abstract—Patch correctness assessment represents a crucial
step in the patch validation process, with the potential to enhance
the practical adoption of automated program repair (APR)
techniques and substantially reduce validation costs. While some
automated techniques have been proposed for assessing patch
correctness, they primarily focus on either ranking patches
based on their likelihood of being correct or classifying them
as correct or incorrect without offering any further explanatory
information. In this paper, we introduce FIXCHECK, a novel
approach that combines random testing and large language mod-
els to automatically generate fault-revealing tests for potentially
incorrect patches. To achieve this, FIXCHECK employs a two-
fold process: Firstly, a random testing procedure generates a
comprehensive set of test cases. Secondly, a large language model
is utilized to derive meaningful assertions for each test case. Ad-
ditionally, FIXCHECK incorporates a selection and prioritization
mechanism, which evaluates the generated tests executed on the
patched program and discards or ranks them based on their
likelihood of revealing faults in the patch.

To assess the effectiveness of our approach, we conducted eval-
uations on a benchmark comprising 160 patches, encompassing
both patches created by developers and patches generated by
APR tools. The results demonstrate that FIXCHECK effectively
generates fault-revealing tests for 62% of incorrect patches writ-
ten by developers, with a high level of confidence. Furthermore,
it complements existing patch correctness assessment techniques
by providing fault-revealing tests for up to 50% of the incorrect
patches identified by state-of-the-art techniques.

I. INTRODUCTION

Generating patches that actually fix software defects is a
crucial task in the maintenance of software systems. Typically,
software defects are reported via specifications, commonly in
the form of test cases, which unveil undesirable behaviors in
the software. In response to these defects, developers create
patches that must undergo validation before being committed
to the codebase, ensuring that the provided test no longer ex-
poses the defect. However, despite such efforts, these patches
may still fail to effectively address the underlying bug or,
worse, introduce new bugs, resulting in what is known as
bad fixes [16] or incorrect patches. Detecting these erroneous
patches can significantly impact the time and effort dedicated
to bug fixes by developers and the overall maintenance of
software systems.

Automated program repair (APR) has been a very active re-
search area in the last decade [4], [5], [7], [8], [10], [12], [13],

[15], [17], [18], [22], [24], [27], [29]–[31], [35]–[37], [47].
APR techniques equip software practitioners with tools capa-
ble of automatically generating patches for buggy programs.
Typically, these methods operate in a test-based environment,
where a faulty program and a test suite containing at least one
fault-revealing test are provided. The APR techniques then
aim to produce a patched program that successfully passes
the entire test suite. When a patch successfully passes the
whole test suite, it is deemed plausible, and if it indeed
resolves the bug, it is considered correct. However, since test
suites generally offer only a partial specification of the desired
software behavior [40], plausible patches generated by APR
techniques are prone to overfitting, leading to the creation of
numerous incorrect patches that fail to address the bug [14],
[41]. This issue has been a significant obstacle to the adoption
of APR techniques by software practitioners [43]. Therefore,
the automated detection of incorrect patches assumes even
greater importance.

To tackle this challenge, and with the primary objective of
promoting the widespread adoption of APR tools, a range
of techniques for patch correctness assessment have been
proposed [11], [25], [32], [43], [48], [49], [52]. One cate-
gory of these techniques consists of dynamic approaches that
operate by comparing the run-time behavior of the patched
program with its buggy counterpart. Among the state-of-the-
art dynamic techniques, PATCH-SIM [49] stands out. PATCH-
SIM is a similarity-based technique that generates new test
cases to measure the behavioral differences between the buggy
and patched versions. It then uses the enhanced test suite to
assess patch correctness considering that a correct patch may
behave similarly on passing tests while differently on failing
tests compared with the buggy program. Other techniques
for patch correctness analysis are instead based on static or
hybrid approaches. Static approaches address the problem by
attempting to predict whether a patch is correct or not, based
on some features that can be computed with static analysis.
As an example, BATS [43] represents a static approach that
operates by evaluating the similarity of generated patches with
previously verified correct patches. These correct patches cor-
respond to failing test cases that bear resemblance to the failing
tests associated with the specific bug under consideration.

On the other hand, hybrid techniques combine static and



dynamic information to predict the correctness of a patch. A
recent hybrid technique, Shibboleth [11], assesses the correct-
ness of a patch through a combination of three metrics: first, a
syntactic similarity between the buggy and patched programs;
second, a semantic similarity between the execution traces
of both programs; and third, the code coverage achieved by
the originally passing tests. Shibboleth subsequently leverages
these metrics to rank patches or classify them as correc-
t/incorrect using machine learning algorithms. Despite the
significant progress made by these techniques, notably by
Shibboleth [11], they still exhibit limitations in the output they
provide to users. While assessing the correctness of a patch,
these techniques typically yield a binary result (correct/incor-
rect) without providing any additional information regarding
the rationale behind such decision.

Although certain dynamic techniques [49], [52] employ
test generation to discover new tests for the patch under
analysis, they are still not able to produce tests evidencing the
incorrectness of the patch or they only do so in a very limited
manner. For instance, PATCH-SIM [49] generates new tests
using Randoop [39], uses them only to measure the behavioral
differences between the buggy and patched versions, and
determines patch correctness from such differences. Thus,
when a patch is flagged as incorrect, users may find themselves
compelled to invest considerable time and effort in understand-
ing the reasons behind the inaccuracy and devising a concrete
scenario (i.e., a test case) that demonstrates the incorrectness
of the patch. Opad [52], another dynamic technique based
on test generation, uses instead fuzzing testing to generate
new test cases on the buggy program, and then relies on two
predetermined oracles to detect patches that produce crash or
memory-safety problems. However, these oracles are not able
to detect other types of incorrect patches. This scenario poses
challenges to the effective utilization of these techniques.

To address such limitations, in this paper we propose
FIXCHECK, a novel approach for improving the output of
patch correctness analyses. FIXCHECK combines static anal-
ysis, random testing and large language models (LLMs) to
automatically generate tests highlighting and explaining the in-
correctness of a patch. The fundamental hypothesis underlying
FIXCHECK is that the scenario that reveals the incorrectness
of the patch is similar to the original fault-revealing test
case. Thus, instead of using standard test generation tools,
FIXCHECK employs a static analysis process on the initial
fault-revealing test that generates new similar tests by means
of transformations. These transformations preserve most of the
structure of the initial test, and produce a slight modification
in the test input. The obtained tests can then be executed
against the patched program. If a new test does not trigger
a failure, it may be due to the absence of an adequate oracle.
To address this issue, rather than using predetermined oracles,
FIXCHECK relies on LLMs to generate meaningful assertions
to complement the generated tests. The use of LLMs in
this task is motivated by their success in a variety of tasks,
including program repair [8], [18], [47]. Finally, FIXCHECK
collects the traces of all the failing tests (either without or with

assertions) and computes a similarity score with respect to the
trace of the initial fault-revealing test. Failures with a similarity
score above a certain threshold are reported by FIXCHECK as
evidence of the incorrectness of the patch under analysis.

We evaluate FIXCHECK on a benchmark composed of 160
patches, 30 of which are correct and 130 are incorrect. These
patches come from two sources. First, we use BF4J, a dataset
of 40 incorrect patches that we collected from open source
projects, for which test cases evidencing their incorrectness
are available for 21 of them. This ground truth of incorrect
patches and tests is used to accurately assess the performance
of FIXCHECK in generating tests evidencing the incorrectness
of a patch. Second, we use the dataset of 139 patches used
in the evaluation of PATCH-SIM [49]. These are patches for
bugs in Defects4J [20], generated with existing APR tools.
We use this dataset to analyze how FIXCHECK can be used
to improve the output of existing patch correctness analysis
techniques. Overall, our results show that FIXCHECK is able to
generate tests evidencing the incorrectness of a patch for 62%
of incorrect patches written by developers. Moreover, we show
that FIXCHECK is able to generate fault-revealing tests for
up to 50% of incorrect patches detected by patch correctness
assessment techniques, thus improving the output of these
analyses. These results provide initial and strong evidence that
FIXCHECK is effective, and can provide a valuable output to
users of patch correctness analysis techniques.

To sum up, the contributions of this paper are the following:
• FIXCHECK, a novel approach for improving patch cor-

rectness analyses that combines static analysis, random
testing and large language models.

• BF4J (Bad Fixes for Java), a dataset composed of 40
incorrect patches written by developers during the main-
tenance of open source projects.

• A detailed evaluation of the performance of FIXCHECK
to generate tests evidencing the incorrectness of a patch,
and how it can be used in combination with existing patch
correctness assessment techniques.

II. MOTIVATING EXAMPLE

This section presents a motivating example with the purpose
of illustrating how FIXCHECK can obtain tests evidencing the
incorrectness of a patch.

Figure 1 illustrates tests that are part of two subsequent
commits made by a developer while fixing a bug in the
jackson-databind component of the Jackson JSON li-
brary for Java. The bug, reported in the issue 1181, is re-
lated to a serialization issue that arises when an external
class is being serialized. Figure 1(a) shows the initial fault-
revealing test that allows to reproduce the bug. The test
first initializes an ObjectMapper, which provides meth-
ods to serialize/deserialize objects to/from the JSON for-
mat. To reproduce the bug, the test attempts to serialize
an object of class ExternalTypeWithNonPOJO, which
has a unique field value of class Object, in the test

1https://github.com/FasterXML/jackson-databind/issues/118



public void testWithScalar118() {
ObjectMapper mapper = new ObjectMapper();
ExternalTypeWithNonPOJO input = new

ExternalTypeWithNonPOJO(new Date(123L));
String json = mapper.writeValueAsString(input);
assertNotNull(json);
// and back just to be sure:
ExternalTypeWithNonPOJO result = mapper.readValue(json

, ExternalTypeWithNonPOJO.class);
assertNotNull(result.value);
assertTrue(result.value instanceof java.util.Date);

}

(a) Initial fault-revealing test.
public void testWithNaturalScalar118() {
ObjectMapper mapper = new ObjectMapper();
ExternalTypeWithNonPOJO input = new

ExternalTypeWithNonPOJO(Integer.valueOf(13));
String json = mapper.writeValueAsString(input);
assertNotNull(json);
// and back just to be sure:
ExternalTypeWithNonPOJO result = mapper.readValue(json

, ExternalTypeWithNonPOJO.class);
assertNotNull(result.value);
assertTrue(result.value instanceof Integer);

}

(b) Subsequent developer-written test.
public void test0() {
ObjectMapper mapper = new ObjectMapper();
ExternalTypeWithNonPOJO input = new

ExternalTypeWithNonPOJO(new Integer(54));
String json = MAPPER.writeValueAsString(input);
// and back just to be sure:
ExternalTypeWithNonPOJO result = MAPPER.readValue(json

, ExternalTypeWithNonPOJO.class);
assertNotNull(result.value);
assertTrue(result.value instanceof Integer);
assertEquals(Integer.valueOf(54), result.value);

}

(c) Test produced by FIXCHECK.

Fig. 1: A bug revealing test in the jackson-databind library
and two tests revealing a defect in the corresponding patch:
one produced by the developer and the other by FIXCHECK.

being instantiated with a Date object. The execution of
the test fails with a JsonGenerationException that is
thrown during the invocation of the writeValueAsString
method. From the discussion in the issue, one can see that
the problem is related to the use of a Date object in
the ExternalTypeWithNonPOJO class. The initial fault-
revealing test and the first patch attempting to fix the bug are
part of the commit 69a1eae.

Subsequently, the issue was reopened because the first patch
was actually incorrect. Although the patch fixed the problem
related to the Date object, it did not consider the case in
which the object of class ExternalTypeWithNonPOJO
was instantiated with other types. Figure 1(b) shows a test
that reveals the defect in the patched version. It is easy to see
the high level of similarity between the initial fault-revealing
test and the subsequent test evidencing the defect in the patch.
In fact, the only difference between these two tests are: the
use of an Integer object instead of a Date object when
instantiating the ExternalTypeWithNonPOJO object, and

the last assertion that checks that the deserialized object has
an Integer value instead of a Date value. This test was
provided by the developer in the commit a795fa2, which
also provides the final correct patch. This situation is consistent
with our intuition that the initial tests that reveal a bug
and the tests that allow to exhibit a defect on a patch are
often very similar. In fact, in BF4J, the dataset we collected,
we found that for ∼70% of the incorrect patches, the test
exposing the problem in the patch only differs from the initial
fault-revealing test in the test input and in the corresponding
assertions. Despite that the incorrectness of the first patch in
our example could have been detected by some existing patch
correctness assessment technique, such as PATCH-SIM [49]
or Shibboleth [11], the test case revealing the defect in the
patch would still have to be manually provided.

The main goal of FIXCHECK is to assist developers in pro-
ducing fault-revealing tests for incorrect patches. To achieve
this, it employs a combination of static analysis, random test-
ing and large language models. FIXCHECK works as follows.
Initially, it uses a lightweight static analysis to generate a
set of tests that differ from the initial fault-revealing test in
the test inputs, which are selected through a random process.
Then, it leverages LLMs to generate meaningful assertions for
each test, which are then executed against the patch. Finally,
FIXCHECK compares the failure traces of the failing tests with
the failure trace of the initial fault-revealing test, in order to
rank them according to the failure similarity.

For our example, FIXCHECK generated the test in Fig-
ure 1(c). Similarly to the developer written test in Fig-
ure 1(b), the one produced by FIXCHECK instantiates the
ExternalTypeWithNonPOJO object with an Integer
object, which allows to reproduce the failure in the patched
version. The test also includes the corresponding asser-
tions produced using a LLM. Notice how, in addition of
checking that the deserialized object has an Integer
value, the exact value of the Integer object is also
checked. It is worth mentioning that besides this test, FIX-
CHECK generated another similar test that instantiates the
ExternalTypeWithNonPOJO object with a Boolean
object, which also reproduces the same bug in the patch.

III. APPROACH

Figure 2 shows an overview of FIXCHECK our technique
for improving patch correctness analysis. FIXCHECK takes
as input a patch p, a fault-revealing test t of the bug being
addressed by p (i.e., a test that fails on the unpatched version of
the program and passes on the patched version), and the failure
trace ft of t. FIXCHECK then attempts to produce a fault
revealing test t′ for the patch p. FIXCHECK works in three
main steps: (1) a Test Prefixes Generation step that generates
a set of tests that are similar to t, (2) an Assertion Generation
step that derives meaningful assertions for each test, and (3) a
Failing Tests Selection and Prioritization step that selects and
prioritizes the failing tests based on their likelihood of actually
revealing a defect in the patch p.



Fig. 2: An overview of our approach.

A. Test Prefixes Generation

Our approach begins by generating a set of test prefixes
(excluding assertions) similar to the provided fault-revealing
test t. As illustrated in Figure 2, this initial step takes test t
and patch p as input, producing a set T of test prefixes. The
parameter n determines the number of tests to be generated.
These tests closely resemble test t but differ slightly in input
values. To achieve this, n copies of test t are created, with
each copy having a concrete input value replaced by a new
random value. The decision of which value to change is made
randomly. The replacement value is selected from a set of input
providers—components generating random inputs of specific
types. Initially, each provider is instantiated with concrete
values obtained from other tests in the same test suite as test t
and from the program being patched, obtained through static
analysis. To provide a new input value for a given type, the
provider randomly selects one of its values or uses a new
random value of the same type. Our current implementation
includes providers for the primitive types boolean, int,
long, float, double, char, and non-primitive types
String and Object. The boolean provider simply returns
true or false, numeric providers offer random values from
collected ones or within a configured range [min, max], the
char provider alternates between a randomly chosen value
or any random character, and the string provider alternates
between a randomly chosen string or generates a new string
by concatenating a previously collected string with a random
character. The object provider uses any value collected for
other providers. User-defined type providers can be easily
implemented and added.

After generating the set T of tests, each test is compiled
and executed. A failing test during execution is considered
a potential bug witness in the patch, advancing it to the
selection and prioritization step (Section III-C). If the test
passes, it moves to the assertion generation step (Section III-B)
to generate meaningful assertions. Thus, two sets are obtained
at the end of this step: a set P of passing tests and a set F of
failing tests.

B. Assertion Generation

Assertion generation is a pivotal step in our approach, focus-
ing on producing meaningful assertions for the set P ⊆ T of
passing tests generated in the previous step. To achieve this, we
utilize a code language model, replit-code2, specifically
designed for code completion. This model, developed and
trained by Replit, Inc., is a causal language model focused
on code completion and has been trained on a subset of the
Stack Dedup v1.2 dataset [23], a 3.1 TB dataset containing per-
missively licensed source code in 30 programming languages,
with Java being the second most represented language.

Despite the availability of other code language models [6],
[46], we opted for replit-code for two main reasons.
Firstly, it is an open-source model, ensuring the replicability
of our approach. Secondly, being a model trained for code
completion aligns well with the goal of generating assertions.

In the integration of replit-code within FIXCHECK,
for each passing test tp ∈ P generated in the previous
step, we create a prompt to serve as input for the model.
Given that replit-code is trained for code completion, the
ideal prompt is an incomplete piece of code. To guide the
model towards generating assertions, the prompt is crafted
by combining the initial fault-revealing test t with the test
tp, lacking assertions. This way, the prompt comprises a
sample test with assertions (t) and the test tp to be completed
with assertions. Figure 3 shows the prompt that FIXCHECK
would pass to replit-code for the test test0 from our
motivating example. The model also requires the provision of
a set of parameters, including the maximum number of tokens
to be generated during the completion and the temperature,
which controls the randomness of the generated tokens. We set
the maximum number of tokens to 48 since it typically results
in the generation of 3 to 4 assertions. The temperature is set
to 0.2, the default value. After replit-code completes the
assertions, we extend the test tp with the generated assertions,
disregarding any additional code that may have been produced.

2https://github.com/replit/ReplitLM/tree/main/replit-code-v1-3b



// [PROMPT]
public void testWithScalar118() {
ObjectMapper mapper = new ObjectMapper();
ExternalTypeWithNonPOJO input = new

ExternalTypeWithNonPOJO(new Date(123L));
String json = mapper.writeValueAsString(input);
assertNotNull(json);
// and back just to be sure:
ExternalTypeWithNonPOJO result = mapper.readValue(json,

ExternalTypeWithNonPOJO.class);
assertNotNull(result.value);
assertTrue(result.value instanceof java.util.Date);

}

public void test0() {
ObjectMapper mapper = new ObjectMapper();
ExternalTypeWithNonPOJO input = new

ExternalTypeWithNonPOJO(new Integer(54));
String json = MAPPER.writeValueAsString(input);
// and back just to be sure:
ExternalTypeWithNonPOJO result = MAPPER.readValue(json,

ExternalTypeWithNonPOJO.class);
------------------------------------------------------------
// [MODEL RESPONSE]
assertNotNull(result.value);
assert(result.value instance of Integer);
assertEquals(Integer.valueOf(54), result.value);

}

Fig. 3: Sample of a prompt used to call the replit-code
model and the assertions generated by the model.

This process is repeated for every test in P . Each test is
compiled and executed as new assertion statement is added.
If the execution fails, the test is moved from P to the set of
failing tests F . Otherwise, the test remains in P .

However, it is important to note that assertions generated
by replit-code model, or any other language model
we may use, are not necessarily correct. This may cause
FIXCHECK to generate tests that fail due to the presence of
incorrect assertions. Nevertheless, since these assertions result
in failures unrelated to the initial fault-revealing test, they are
considered irrelevant, and FIXCHECK is likely to discard them
in the next step.

C. Failing Tests Selection and Prioritization

The final phase of our process involves selecting and
prioritizing the failing tests within F . Our primary objective
is twofold: firstly, to eliminate irrelevant failing tests—those
failing due to reasons unlikely to be connected to a defect
in the analyzed patch (e.g., failures arising from unexpected
inputs); and secondly, to prioritize the remaining failing tests.
Prioritization aims to identify and report the tests that are more
likely to unveil a bug in the patch.

Given the failure trace ft (as a sequence of method in-
vocations) of the initial fault revealing test t and the set F
of generated failing tests with their respective failure traces,
we first compute a score for each test ti ∈ F , based on the
similarity between its failure trace fi and the failure trace ft.
Let f1 be the failure trace of a failing test t1 ∈ F , the similarity
score with respect to ft is based on the Levenshtein distance
between the strings corresponding to f1 and ft. Essentially,
it represents the minimum number of single-character edits
(insertions, deletions, or substitutions) required to change one

string into the other. Let s1 be the string corresponding to f1
and st the string corresponding to ft, the final score for the
generated failing test t1 is computed as follows:

score(t1) =
m− Levenshtein(s1, st)

m

where m is the maximum length between s1 and st. The more
similar the strings s1 and st are, the closer to 1 the score is.
Once the scores for each test in F have been computed, we
proceed to discard and prioritize the tests.

Discarding Failing Tests: we discard all tests with a score
below a predefined threshold, denoted as K, which is a
parameter in our approach. Additionally, if the failure trace
of a failing test deviates significantly from the failure trace of
the initial fault-revealing test, it is also discarded.

Ranking Failing Tests: the ranking simply sorts the tests in
descending order according to their score. If there is more than
one failing test with a score >= K, the test with the highest
score is reported as evidence of the incorrectness of the patch.

Note that in our current prototype the passing tests in P are
not used for further analysis. However, they could be included
in the code base to serve as regression tests. Moreover, by
incorporating more sophisticated mechanisms during the test
input generation, such as fuzzing, one could also focus on
increasing the coverage of the patch under analysis, similarly
to techniques focused on testing the patch [32].

D. Implementation

The current implementation of FIXCHECK is in Java, and
supports the analysis of Java programs. Supporting other
languages is feasible, although it will demand a considerable
effort to implement the test generation step, as the current
static analysis, test compilation and execution are tied to Java.

The test generation step uses the JavaParser library [1] to
perform the static analysis of the initial fault-revealing test and
the target patch, and also to generate the new tests prefixes.

The assertion generation step uses the replit-code
model via a very simple REST API, implemented in Python
with the Flask library [2]. The main reason for this choice
is that the model is accessible through HuggingFace3, which
provides a simple interface to access, load and use the model.

It is worth to note that the current implementation of
FIXCHECK can be easily extended with other test generation
processes and with other assertion generation mechanisms.
The tool, as well as all the data and scripts used in our eval-
uation, are publicly available in our replication package [3].

IV. EVALUATION

To evaluate FIXCHECK, we performed a series of experi-
ments focused on the following research questions:

RQ1 Is FIXCHECK effective in generating fault-revealing tests
for incorrect patches?

RQ2 How does FIXCHECK complement with patch correctness
assessment techniques?

3https://huggingface.co/replit/replit-code-v1-3b



TABLE I: Incorrect patches from BF4J, our dataset compris-
ing developer-written patches in open source projects.

Project GitHub Repository Patches

avro apache/avro 1
choco chocoteam/choco-solver 1
cli apache/commons-cli 3
csv apache/commons-csv 1
graphhopper graphhopper/graphhopper 3
io apache/commons-io 1
jackson-databind FasterXML/jackson-databind 3
jxpath apache/commons-jxpath 2
lang apache/commons-lang 1
math apache/commons-math 2
time4j MenoData/Time4J 3

Total 21

RQ3 What is the impact of assertions generated by LLMs in
the performance of FIXCHECK?

RQ4 How efficient is FIXCHECK?
RQ1 analyzes the effectiveness of FIXCHECK in generating

fault-revealing tests for incorrect patches, with respect to a
ground truth. RQ2 focuses on evaluating how FIXCHECK
can complement the analysis performed by the state-of-the-
art patch correctness assessment tools by providing additional
evidence of the incorrectness of a patch.

We chose the dynamic technique PATCH-SIM [49] and
the hybrid approach Shibboleth [11] because of their superior
performance compared to other techniques. We do not consider
Opad [52] since it targets C programs, and it is thus out of the
scope of our evaluation. Finally, RQ3 evaluates the impact of
LLM-generated assertions in the performance of FIXCHECK,
while RQ4 is focused on the efficiency of the approach.

A. Dataset

Our evaluation encompasses a total of 160 patches sourced
from two distinct origins: a dataset of patches manually crafted
by developers in open-source projects and a dataset of patches
automatically generated by APR tools. To assess the efficacy
of FIXCHECK in generating fault-revealing tests for incorrect
patches, a dataset of incorrect patches with known fault-
revealing tests is crucial. We specifically refer to the test that
unveils the defect in an incorrect patch, not the conventional
fault-revealing test for bugs (as in Defects4J [20]). Since no
such dataset is readily available, we created our own dataset,
named BF4J. This dataset comprises 40 incorrect patches
manually produced by developers during the maintenance of
various open-source projects. We selected 11 popular projects
from GitHub, including 6 from Defects4J, and collected the
patches by automatically mining issues using the GitHub
API. Filtering issues exhibiting the commit, close, reopen
pattern, we obtained 26,937 issues, of which 249 showed
the pattern of interest. Through manual analysis, we con-
firmed that 209 issues were unrelated to bug fixes or were
closed after discussion, and thus, they were discarded. The
remaining 40 issues underwent careful analysis to identify the
incorrect patches, resulting in the 40 patches in our dataset.
For our experiments, we focused on analyzing 21 patches, as

TABLE II: Dataset of patches generated by APR tools.

Project Patches Correct Incorrect

chart 26 3 23
lang 15 5 10
math 83 20 63
time 15 2 13

Total 139 30 109

these included subsequent commits containing fault-revealing
tests needed as input by FIXCHECK. Table I displays the
distribution of the incorrect patches from BF4J used in our
experiments, while the complete dataset is available in our
replication package [3].

To evaluate how FIXCHECK can complement the analysis
performed by patch correctness assessment tools, we consider
a dataset of patches for which the correctness has been
previously assessed. This dataset was collected and used in the
evaluation of PATCH-SIM [49], and later used in the evalua-
tion of Shibboleth [11]. It contains 139 patches, with 30 being
correct and 109 being incorrect. The patches were generated by
the APR tools jGenProg [34], Nopol [51] (versions 2015 and
2017), jKali [34], ACS [50] and HDRepair [24]. Within these
tools, jGenProg and jKali are Java implementations of the
search-based tools GenProg [13] and Kali [40], respectively;
Nopol is a tool relying on constraint solving; and ACS and
HDRepair are based on statistical models. All the patches were
generated while addressing bugs in the Defects4J. Precisely,
a total of 74 bugs were analyzed, including bugs from the
following projects: chart, lang, math and time. Table II shows
the distribution of patches per project.

B. Experimental Setup

FIXCHECK requires as input a potentially incorrect patch
and the initial fault-revealing test (of the bug being addressed)
with its corresponding failure trace. Thus, before analyzing
each patch, we collect the initial fault-revealing tests with their
traces. To do so, we build each project on the buggy version,
and then run the fault-revealing test collecting the trace. In the
case of the 139 patches generated by the APR tools, Defects4J
already includes the initial fault-revealing test for each bug,
and also provides the infrastructure to build the projects and
run the tests. For the 21 patches from our dataset, similarly
to Defects4J, we implemented a framework to automate the
process of building the versions related to each patch. Thus,
for these patches we use our framework to build the buggy
version and then run the initial fault-revealing test.

Once we have the initial fault-revealing test and its trace
for each patch, we apply the patch to the buggy version, and
build the project. From this point, we execute FIXCHECK on
each patch. In all our experiments we instruct FIXCHECK to
generate 100 new tests during the test generation step. During
the assertion generation step, replit-code is configured
to generate 48 tokens, which results on an average of 3 to
4 assertions per test. In the final selection and prioritization
step, we configure the parameter K = 0.4. To account for the



TABLE III: Effectiveness of FIXCHECK generating fault-revealing tests for incorrect patches.

Project #P Failing Tests Fault-revealing Tests
Total Discarded Ranked #Reported Correct Precision Recall

avro 1 49 49 0 0 0 1.0 0.0
choco 1 55 55 0 0 0 1.0 0.0
cli 3 133 14 119 2 2 1.0 0.67
csv 1 5 0 5 1 1 1.0 1.0
graphhopper 3 176 114 62 2 2 1.0 0.67
io 1 0 0 0 0 0 1.0 0.0
jackson-databind 3 288 213 75 1 1 1.0 0.33
jxpath 2 151 42 109 2 2 1.0 1.0
lang 1 98 98 0 0 0 1.0 0.0
math 2 115 19 96 2 2 1.0 1.0
time4j 3 268 115 153 3 3 1.0 1.0

Total 21 1,338 719 619 13 13 1.0 0.62

randomness of our approach, we run FIXCHECK a total of 10
times on each patch, and then report the average results.

All the experiments were run on a workstation with a Xeon
Gold 6154 CPU (3GHz), with 128 GB of RAM, running De-
bian/GNU Linux 11. Detailed instructions on how to replicate
the experiments are available in the replication package [3].

C. Effectiveness of FIXCHECK (RQ1)

The effectiveness of FIXCHECK to generate fault-revealing
tests for incorrect patches is measured against the ground
truth. The experiment consisted in running FIXCHECK on each
incorrect patch in our dataset BF4J, and then measuring the
number of patches for which FIXCHECK generated a fault-
revealing test reproducing the same problem as the fault-
revealing test in the ground truth. Concretely, we measure the
precision and recall as follows. Let TP (true positives) be the
number of reported fault-revealing tests that are correct, FP
(false positives) be the number of reported fault-revealing tests
that are incorrect, and FN (false negatives) be the number
of incorrect patches for which no fault-revealing test was
generated. Then, precision and recall are defined as follows:

Precision = TP/(TP + FP ) Recall = TP/(TP + FN)

Intuitively, precision measures the proportion of reported
fault-revealing tests that are actually correct, while recall
measures the proportion of incorrect patches for which FIX-
CHECK is able to generate a fault-revealing test. To confirm
the correctness of a generated fault-revealing test, we conduct
a careful manual inspection to determine whether it failed for
the same reason as the test in the ground truth.

FIXCHECK was executed as described earlier in this section.
Table III summarizes the results of this experiment, grouped by
project. The column #P shows the number of incorrect patches
on each project. The column Failing Tests groups the number
of failing tests generated, including the number of discarded
and ranked tests. Finally, the column Fault-revealing tests
shows the number of tests reported as being fault-revealing, the
number of correct fault-revealing tests, and the corresponding
precision and recall values.

Precision: FIXCHECK achieves perfect precision with K =
0.4, i.e., the 13 reported fault-revealing tests are correct. Of
course, precision is affected by the value of our parameter

TABLE IV: Effect of the parameter K on the effectiveness of
FIXCHECK.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prec. 0.68 0.72 0.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0
rec. 0.62 0.62 0.62 0.62 0.57 0.48 0.33 0.1 0.0 0.0
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Fig. 4: Breakdown of failure reasons of the fault-revealing tests
in the ground truth and how FIXCHECK performed on them.

K used to decide weather a fault-revealing is ranked or not.
However, still for small values of K, the precision is still high
(∼70%), as shown in Table IV, which shows how the precision
and recall of FIXCHECK vary as the value of K is increased.

Recall: FIXCHECK achieves a recall of ∼62%, generating
a correct fault-revealing test for 13 out of the 21 incorrect
patches. To better understand the cases for which FIXCHECK
can and cannot generate a fault-revealing test, in Figure 4
we show a breakdown of the failure reasons of the initial
fault-revealing tests of each patch in the ground truth, and how
FIXCHECK performed on them. Regarding the 13 patches
for which FIXCHECK generated a correct fault-revealing test,
11 of them (∼52%) required an assertion, while the other
2 patches required just to include a specific input value in
the test. This gives relevance to the importance of having
an effective assertion generation technique. Regarding the



TABLE V: FIXCHECK complementing the patch correctness
analysis techniques PATCH-SIM and Shibboleth.

Project #IP PATCH-SIM Shibboleth
#Detected #FR-Tests(%) #Detected #FR-Tests(%)

chart 23 13 7 (53.8%) 21 10 (47.6%)
lang 10 5 2 (40.0%) 10 6 (60.0%)
math 63 35 17 (48.6%) 58 28 (48.2%)
time 13 9 5 (55.6%) 12 5 (41.6%)

Total 109 62 31 (50.0%) 101 49 (48.5%)

8 patches for which FIXCHECK was not able to generate a
fault-revealing test, in 5 of them (∼24%) it failed to produce
the right assertion, while in the remaining 3 cases it failed
to generate a test using a specific input value to trigger
exceptions of type InvalidAvroMagicException,
StringIndexOutOfBoundsException and
RuntimeException.

D. Complementing Patch Correctness Assessment (RQ2)

One of the goals of FIXCHECK is to complement existing
patch correctness assessment techniques, by providing further
evidence of the incorrectness of a patch. In this experiment
we evaluate how FIXCHECK complements two state-of-the-
art techniques: PATCH-SIM [49] and Shibboleth [11]. The
performance of these techniques was previously evaluated in
patches generated by APR tools while addressing bugs in
Defects4J [20]. Although both techniques, notably Shibboleth,
were able to detect a significant number of incorrect patches,
with a high precision, they only report the verdict of the
correctness, without providing any additional information.

To evaluate how our approach can complement these tech-
niques, and to what extent it can improve the output of the
analysis, we execute FIXCHECK on all the patches that were
classified as incorrect by PATCH-SIM and Shibboleth, and
measured for how many of them FIXCHECK is able to generate
a fault-revealing test. The results of this experiment are shown
in Table V, separated by project. The column #IP shows the
number of incorrect patches, the column #Detected shows the
number of patches detected by the corresponding technique,
and the column FR-Tests shows the number of patches for
which FIXCHECK was able to generate a fault-revealing test.

PATCH-SIM: PATCH-SIM, the fully dynamic technique,
detects 62 out of the 109 incorrect patches (a 56.8% of
the total). FIXCHECK is able to generate at least one fault-
revealing test for 50% of these patches. Moreover, we executed
FIXCHECK in the incorrect patches missed by PATCH-SIM,
and FIXCHECK generated fault-revealing tests for 18 of them.

Shibboleth: Shibboleth, a more recent hybrid tool, is able
to detect 101 of them (a 92.6% of the total). For these,
FIXCHECK is able to generate at least one fault-revealing test
for 48.5% of them.

Overall, considering both techniques, FIXCHECK can gen-
erate a fault-revealing test for around 50% of the detected in-
correct patches. This indicates that FIXCHECK can effectively
complement the analyses of these techniques by providing

TABLE VI: FIXCHECK’s performance under different asser-
tion generation mechanisms: w.r.t the ground truth (as in RQ1)
and complementing patch correctness assessment (as in RQ2).

Mechanism Effectiveness Patches with FR-Tests (%)
Precision Recall PATCH-SIM Shibboleth

no-assertion 0.86 0.29 19.4 22.0
previous 0.53 0.42 62.9 59.6
replit-code 1.0 0.62 50.0 48.5

useful information regarding the incorrectness of a patch in
the form of a new fault-revealing test, that could be used by
the developers to debug and improve their patches.

The dataset of this experiment also contains 30 correct
patches. For these, FIXCHECK wrongly generated a “fault
revealing test” for 10 of them. However, as FIXCHECK is
intended to be used in conjunction with a patch correctness
assessment technique that can provide certain confidence on
the incorrectness of a patch, this is not a major concern.

E. Impact of LLM-generated assertions (RQ3)

To analyze the impact of the LLM-generated assertions we
compare three different assertion generation mechanisms: (1)
no assertions, (2) reusing the assertions present in the initial
fault-revealing test, and (3) using replit-code as assertion
generator. For each mechanism, we measure the effectiveness
of FIXCHECK in generating fault-revealing tests w.r.t to the
ground truth (as in RQ1), and the percentage of incorrect
patches identified by patch correctness assessment tools for
which FIXCHECK can generate a fault-revealing test (as in
RQ2). The results of this analysis are shown in Table VI.

No assertions: without assertions FIXCHECK generates
fault-revealing tests for a lower number of incorrect patches,
resulting in a low recall when analyzing effectiveness (29%)
and a lower performance when complementing patch correct-
ness assessment techniques, generating fault-revealing tests for
no more than 22% of the patches. Nevertheless, FIXCHECK’s
tests (without assertions) can still be useful.

Previous assertions: although using assertions present in
the initial fault-revealing test can improve in terms of recall
(42%), precision is significantly reduced (53%). The problem
is that reusing assertions is not always adequate, as it can result
in failing tests with assertions unrelated to the actual fault.
Our motivating example (Section II) reflects this. Although
the percentage of incorrect patches for which a fault-revealing
test is generated when reusing assertions, the percentage is the
highest among the three mechanisms, it is very likely that such
tests contains failing assertions unrelated to the actual fault,
as the precision of FIXCHECK is significantly reduced.

LLM-generated assertions: using the assertions generated
by replit-code is the best option, as they allow to ef-
fectively improve the output of patch correctness assessment
techniques (generating fault-revealing tests for up to 50% of
the detected incorrect patches), while performing better than
the other mechanisms in terms of precision and recall. This
indicates that the assertions generated by replit-code are



TABLE VII: Analysis time of FIXCHECK.

Project #P Time (sec.)
Test Gen Assert. Gen Test Exec. All

chart 26 0 148,242 183 148,425
lang 15 3 79,437 1,025 80,492
math 83 1 469,677 2,831 472,509
time 15 1 52,251 125 52,377
BF4J 21 0 40,312 68 40,380

Total 160 5 789,919 4,259 794,183

more likely to be consistent with the test in which they
are placed. In fact, we observed that the model generates
assertions that are used in the initial fault-revealing test when
appropriate, thus “subsuming” the previous mechanism.

Note that FIXCHECK is independent of the used LLM.
Indeed, we experimented with Llama2 [44], recently
open sourced by Meta. When using the 13B parameter
model, FIXCHECK achieves the same effectiveness as with
replit-code, and better performance complementing patch
assessment techniques (generating fault-revealing tests for up
to 53.2% of the incorrect patches). Given the increasing avail-
ability of LLMs, this is a very positive aspect of FIXCHECK.

F. Efficiency of FIXCHECK (RQ4)

For each patch we measure the time spent during the most
relevant steps of FIXCHECK’s analysis process: test genera-
tion, assertion generation, and test execution. The results of
this analysis are shown in Table VII, where time is measured
in seconds.

Notably, the results show that FIXCHECK spent only 5
seconds to generate the 16,000 tests (100 per analyzed patch),
which evidences the efficiency of our static analysis-based test
generation. This indicates that we could instruct FIXCHECK
to generate many more tests without a significant overhead.

In our experiments the most time-consuming step is the
assertion generation step. It took a total of 789,919 seconds,
with an average of 4,906 seconds (∼81 minutes) per patch, and
around 1 minute per single test. Note that this does not have to
do with FIXCHECK’s approach, but with the fact that we use
a single CPU workstation to perform our experiments, which
negatively affects the performance of replit-code. It is
well-known that for LLMs to be efficient, better computational
resources are required, including GPUs. In fact, we have
observed that the we can generate assertions in a few seconds
per test when using other available models such as Codex [6],
available through the OpenAI API. As mentioned previously,
we favor the use of replit-code since it is a lightweight
open source model that can be easily used.

Finally, FIXCHECK spent a total of 4,259 seconds (∼71
minutes) executing the generated tests, which is a reasonable
time considering that for each single patch the average time
spent executing the 100 generated tests is around 26 seconds.

V. LIMITATIONS

The limitations of FIXCHECK’s approach are mainly in its
test generation capabilities. Currently, the only transformations

supported are input transformations, which means that FIX-
CHECK can generate new tests just by replacing the input
values of the initial fault-revealing test. This may limit the
ability of FIXCHECK to generate fault-revealing tests that
would require generating a test that differs from the initial
fault-revealing test in more than just the input values. In fact,
for 16 out of the total 40 incorrect patches present in BF4J, we
identified that the test that developers provided to reproduce
a defect in the patch, also required to remove/add a method
call with respect to the initial fault-revealing test.

FIXCHECK is also limited in the assertion generation pro-
cess, as it only adds assertions at the end of the test, ignoring
those that may be generated for intermediate statements in the
test sequence. This limitation could be addressed by using a
more sophisticated LLM model that can be instructed to re-
generate the entire test including assertions, instead of just
letting the model complete the test sequence.

VI. THREATS TO VALIDITY

Our evaluation uses 21 patches from BF4J, a meticulously
studied dataset of incorrect patches collected from open-source
projects. To minimize errors, we executed the tests provided
in posterior commits that revealed the defect in the patch, to
ensure they failed. We publicly release our collected dataset
for review by the community.

Additionally, our evaluation of FIXCHECK’s effectiveness
to generate fault-revealing tests for incorrect patches involved
a manual analysis of the generated tests. In this case, we
compared each reported failing test with the fault-revealing
test from the ground truth, to ensure that the generated test was
indeed able to reproduce the defect in the patch. All generated
tests are also publicly available.

Threats to internal validity may arise from the randomness
involved in the FIXCHECK’s test generation and assertion
generation processes. To account for this threat, we analyzed
FIXCHECK’s executions over multiple runs, and reported the
average results. Our current evaluation is limited to 160
patches, which is a relatively small number compared to other
recent studies on patch correctness [11], [43]. In the future, we
plan to extend the experimental evaluation to bigger datasets.

VII. RELATED WORK

Automated Program Repair. APR techniques aim to auto-
mate the generation of patches for buggy programs, relieving
developers from the manual fixing process. Recent approaches
have shown promising results in bug fixing [14], [28]. The
majority of APR techniques adopt the generate-and-validate
approach, wherein a set of candidate patches is generated and
subsequently validated for adequacy through static analysis or
test suites [40]. Despite their efficacy, many APR techniques
may still produce incorrect patches that overly tailor to test
suites without effectively addressing the bugs [40], [41]. This
work has the potential to complement existing efforts by
automatically generating test cases that reveal the incorrectness
of a patch, offering a means to identify potentially overfit
patches generated by APR tools.



Patch Correctness Assessment. To address the overfitting
challenges of APR techniques, various effective approaches
for assessing the correctness of generated patches have been
proposed. Many of these approaches adopt dynamic method-
ologies, requiring the execution of the patched program to
analyze its behavior. PATCH-SIM [49], a state-of-the-art
dynamic approach, aims to identify overfitting patches by
quantifying behavioral changes between the buggy program
and the patch. It utilizes a test generation tool (Randoop [39])
to automatically generate tests that measure these behavioral
differences, subsequently heuristically discarding patches with
significantly different behavior from the original program.
DiffTGen [48] focuses on patches generated by APR tools,
aiding researchers in classifying patches more confidently. It
uses test generation (EvoSuite [9]) to generate new test inputs
that reveal semantic differences between the original faulty
program and the patched program. However, it requires the
correct patch as an oracle for classification, making it less
practical for developers. Similarly, Invalidator [25], based on
semantic and syntactic analysis, also relies on the correct
patch for its semantic reasoning, limiting its practicality.
Opad [52] uses fuzz testing to provide new test inputs for
the buggy program, employing two predetermined oracles to
detect patches introducing crash or memory-safety problems.
xTestCluster [33] is a test-based patch clustering approach
that minimizes the number of plausible patches for developers
to review. It analyzes patches generated by repair tools,
leveraging information from the execution of newly generated
test cases to cluster patches. All these dynamic techniques
utilizing test generation rely on specific test generation tools
as components in their analysis processes. In contrast, FIX-
CHECK implements its test generation process based on static
analysis, offering a more lightweight approach focused on
generating new test cases that differ slightly from the initial
fault-revealing test.

Static and hybrid approaches have also been proposed.
Tan et al. [42] introduced a static technique using anti-
patterns to avoid incorrect patches, but its accuracy has been
questioned [45]. BATS [43], a recent static approach similar
to FIXCHECK, leverages the initial fault-revealing test. For
a given failing test case, BATS computes similarity metrics
to identify historical similar test cases, aiming to identify
associated applied patches. Shibboleth [11], the most recent
hybrid approach, outperforms static and dynamic approaches
by measuring syntactic and semantic changes, as well as code
coverage changes between the buggy program and plausible
patches. Despite existing techniques for patch assessment,
such as Evocatio [19], Opad [52], and Katch [32], which
primarily focus on predicting the correctness of patches gen-
erated by APR tools, FIXCHECK stands out by offering a
unique capability: the automatic generation of test cases that
serve as additional evidence of the incorrectness of a patch,
complementing these existing approaches.

Large Language Models. LLMs have shown a promising
performance in tasks related to code generation. Various works
have studied the use of code language models (specifically

trained on code and on code-related tasks) to improve APR [8],
[18], [47]. CodaMosa [26] employs LLMs to improve code
coverage in search-based software testing techniques. Kang
et al. [21] use LLMs to, given a faulty program and a bug
report, produce the failing test cases that reproduces the bug.
Non-LLM based approaches have also been proposed for
test completion [38], based on deep learning models using
code semantics. We leverage the power of LLMs to generate
meaningful assertions for test cases, which, to the best of our
knowledge, is their first use for this purpose.

VIII. CONCLUSION AND FUTURE WORK

The assessment of patch correctness is a challenging task
with significant implications for the effectiveness of APR
tools and the potential to aid developers in the patch de-
velopment process. Although effective techniques for patch
correctness assessment exist, their output often provides a
binary classification of patches as either correct or incorrect.
To overcome this limitation and offer insights into the nature of
incorrect patches, we introduced FIXCHECK—a technique that
combines static analysis, random testing, and large language
models to generate fault-revealing tests for incorrect patches.
Our evaluation demonstrates that FIXCHECK is capable of
generating fault-revealing tests, showcasing the incorrectness
of 62% of patches authored by developers. Moreover, we illus-
trate that FIXCHECK enhances the output of patch correctness
assessment techniques by generating fault-revealing tests for
up to 50% of detected incorrect patches. While our work
exhibits promising results, we recognize several limitations in
our approach that present avenues for improvement. The test
generation process could benefit from additional transforma-
tions, such as adding or removing statements, to generate more
diverse tests. The random testing-based input selection may be
enhanced by incorporating alternative techniques like fuzzing.
Our assertion generation process, currently adding assertions
only at the end of tests, might be further refined to consider
assertions for intermediate statements in the test sequence.
The modular structure of our technique allows for targeted
improvements in specific components, such as enhancing test
generation diversity or incorporating more precise assertions
in the assertion generation process. Future extensions of our
tool will address these limitations and expand our evaluation
to include a broader range of patches. Additionally, we plan to
investigate how fault-revealing tests generated by FIXCHECK
can be effectively utilized by developers or APR tools to
enhance the patch generation process.
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