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Abstract—Symbolic execution allows one to systematically ex-
plore program paths by executing programs on symbolic inputs,
and constructing path conditions that can be analyzed using
constraint solving. When programs handle heap-allocated struc-
tures, and executions are assumed to begin in states satisfying a
property like a precondition or invariant, symbolic execution not
only needs to maintain path conditions, but also partially concrete
heaps. Partially concrete heaps are increasingly concretized as
symbolic execution progresses, and their feasibility (i.e., deciding
whether they can be extended to fully concrete structures that
satisfy the precondition) needs to be determined, to deem a
path realizable and continue execution. This latter task generally
requires the manual provision of routines to check the feasibility
of partially concrete structures, which are often imprecise (e.g.,
do not detect all infeasible structures), and increase the cost of
symbolic execution.

In this paper, we improve the above situation by proposing an
automated machine learning technique for determining whether
a partially symbolic structure can be extended into a concrete
structure satisfying a given invariant. Our approach does not
require additional, manually provided routines for checking
structure feasibility. It is based on recognizing feasible/infeasible
partially symbolic structures by using a neural network, which
is trained with automatically generated partially symbolic struc-
tures. These structures can be obtained by either symbolically
executing the assumed invariant, or by generating and mutating
structures using assumed-correct building routines. Our experi-
ments, based on a benchmark of heap-allocated data structures
of varying complexities, show that by incorporating our learned
symbolic invariants as a pruning mechanism within Symbolic
PathFinder, path infeasibility detection is greatly improved, as
well as symbolic execution running times.

Index Terms—Symbolic execution, lazy initialization, neural
networks

I. INTRODUCTION

Symbolic execution (SE) [16] is a well-established program
analysis technique, that allows one to systematically explore
paths of a program under analysis, and exploit these explo-
rations for a number of tasks, such as test generation [15], [13],
[7], program verification [15], [22], and estimating worst case
running times [6], [18], among others. As opposed to concrete
program executions, which run on concrete program inputs,
SE operates by executing programs on symbolic inputs, and
constructing path conditions that correspond to the conditions
that have to hold on program inputs, so that the currently
explored path is executed [16]. Analysis via SE constitutes
a significant advantage over concrete executions due to, es-
sentially, two main characteristics: many concrete program

executions are collapsed into single symbolic executions, thus
leading to a significantly smaller explosion of executions, and
collected path conditions can be checked for satisfiability using
constraint solvers, so that unsatisfiable paths are pruned early
in the symbolic analysis. Constraint solving is actually an
important part of SE, since it is the driving technology used,
e.g., to solve paths and generate program inputs for testing,
among other applications.

SE was originally devised as a technique for programs
handling basic datatypes, or simple structured types. As a
result, path conditions typically involve arithmetic and logical
constraints, that in many cases can be solved resorting to
constraint solvers, such as SAT and SMT solvers [20]. When
programs handle complex heap-allocated data structures, and
their SE is assumed to begin in a state satisfying a certain
property, e.g., a precondition or invariant, SE starts on a sym-
bolic representation of the heap [15], [5]. As SE progresses,
path conditions are collected and heaps become partially
“concretized”, according to the behavior of the program under
analysis, and its manipulation of the heap. In order to decide
whether a given (partially) symbolic program state is feasible
or not, so that the path can be continued or pruned, one then
needs to determine whether a partially symbolic heap can lead
to a fully concrete structure that satisfies the precondition
or not. In general, this cannot be straightforwardly decided
by a constraint solver, since structure feasibility depends on
some ad hoc precondition, that in many cases is captured as
code in the programming language, e.g., as an operational
representation invariant or repOK [17]. Thus, it is in principle
beyond theories that SMT solvers support. Existing approaches
to determining whether a partially symbolic heap satisfies a
given precondition or not are based on manually or semi-
automatically producing “hybrid” repOK procedures, that are
typically weak approximations of repOK routines for partially
symbolic structures (i.e., they tend to accept many infeasible
partially symbolic structures) [15], [23], or require further
assistance from users, e.g., by requiring an additional manually
provided “hybrid” repOK, or a declarative version of this
constraint, expressed in a logical formalism [25]. Besides the
manual effort required in providing these “hybrid” repOKs,
there is also a cost in calling these routines whenever the
partially symbolic heap is further concretized, diminishing the
overall efficiency of the SE process.

In this paper, we deal with the described situation via an



automated machine learning technique that obtains a partially
symbolic structure classifier, i.e., a model that can detect
whether a partially symbolic structure can be extended into
a fully concrete structure satisfying a given invariant. Our
approach is based on training a neural network with auto-
matically produced valid/invalid partially symbolic structures.
We employ two alternative mechanisms to generate the train-
ing set. The first consists of using SE on the correspond-
ing invariant, and from each valid (resp. invalid) structure
obtained, automatically generating a family of valid (resp.
invalid) structures through an abstraction (resp. concretization)
process. This approach is worthwhile because symbolically
executing repOK generally scales better than symbolically
executing other more sophisticated methods, especially “de-
structive” methods, i.e., those that modify the heap (repOK is
intrinsically side-effect free, making it simpler to symbolically
execute than other methods [25]). The second approach con-
sists of using run-time structure generation: a set of assumed-
correct building routines is used to produce valid structures,
which are in turn mutated to build invalid ones; then, the
same abstraction/concretization mechanism described above is
employed, to generate families of partially symbolic structures
from the collected concrete ones.

Notice that our technique, whatever the procedure used to
generate the training set, is unsound, in the sense that using
a neural network may wrongly classify some valid partially
symbolic structures, as invalid. While this issue invalidates
the use of our technique in SE contexts that need to guarantee
exhaustive path exploration, the technique is still worthwhile
for other SE execution contexts, e.g., for automated test gen-
eration, or worst-case efficiency estimation. Also, its applica-
bility is better suited for programs dealing with heap-allocated
structures involving complex representation constraints: in SE
on subjects with weak constraints, almost every path leads to
feasible structures, thus leaving almost no room for pruning,
and making our approach to constitute a time overhead. Our
experiments, based on a benchmark of heap-allocated data
structures of varying complexities, show that by incorporating
our trained neural networks as a pruning mechanism into
Symbolic PathFinder [23], we preserve high levels of test
suite quality metrics (for test suites generated with Symbolic
PathFinder), while greatly improving path infeasibility detec-
tion, as well as SE running times.

II. BACKGROUND

A. Symbolic Execution

Symbolic execution [16] collapses families of executions
by substituting concrete values for program variables with
symbolic ones. The use of symbolic values instead of concrete
ones implies that whenever branching conditions involving
symbolic values are visited while symbolically executing a
program, the satisfaction of these conditions cannot be di-
rectly decided and instead constraints are collected to reflect
the decisions that must be taken to visit specific paths. To
systematically explore (bounded) program paths, this process
is exhaustively followed through backtracking. The constraints

gathered in the traversal of a specific path, that typically
include some precondition (an initial assumed condition on
program inputs), are called its path condition, since it repre-
sents the conditions that variables must meet to traverse the
path. Such conditions can be checked for feasibility using con-
straint solvers (typically SMT solvers [9], [24]); for final paths
(paths that cannot be further extended), solving the conditions
produces inputs that exercise the corresponding path, and can
be used for automated test generation and verification (in this
last case, conjoining the path condition with the negation of a
postcondition, for instance) [23], [28]; for non-final paths, path
conditions deemed infeasible can prune the systematic path
traversal of a symbolic executor, forcing it to backtrack and
explore other paths. Thus, path condition checking is a very
important part of symbolic execution. In general, for programs
involving iteration or recursion, the number of program paths
is either very large or infinite. Thus, symbolic execution
typically requires some sort of bound, e.g., in the maximum
length of paths to be considered.

B. Lazy Initialization

When programs manipulate variables of basic datatypes
or simple structured types, solving path conditions can be
resolved resorting to standard constraint solving technology
such as SMT solving, thanks to the availability of theories
that support these datatypes. But when programs involve user-
defined heap-allocated datatypes, SMT-solvers cannot straight-
forwardly handle constraints on these datatypes, and thus some
complementary approach is in order. A successful mechanism
to deal with this situation is the concept of lazy initializa-
tion (LI) [15]. LI proposes to initially set every reference-
based variable to a symbolic “object”, that will be partially
concretized when first accessed. The partial concretization
will have a number of alternative paths, that will need to be
exhaustively explored. A symbolic object can be concretized:
(i) as null; (ii) as a reference to a previously observed object
of the corresponding type, i.e., a compatible object already
in the partially symbolic heap (notice that this alternative
actually corresponds to as many cases as compatible objects
are already in the heap); or (iii) as a reference to a new object
(one not previously observed), whose fields are all symbolic.
Notice that in this generalized context, symbolic execution will
maintain a path condition as well as a partially symbolic heap,
and one still needs to establish feasibility, now of the path
condition in conjunction with the partially symbolic heap, over
which one will also typically have some assumed precondition
(e.g., an assumed representation invariant on a heap-allocated
data structure).

As an example, let us consider a simple implementation of
heap-allocated binary trees of integers, and a search method,
that given a node of a tree and a value to search for, returns
true iff the value belongs to the subtree having the node as
root. The method is shown in Figure 1(a), and features a
precondition, that assumes the node is the root of a binary
tree (acyclic structure, with each reachable node except the
root having exactly one parent). Structure (1) in Figure 1(b)



\requires this.isBinTree();
public boolean search(int x) {
    if (this.value == x) return true;
    if (this.left != null) {
        boolean inL = this.left.search(x);
        if (inL) return true;
        if (this.right != null)
            return this.right.search(x);
    }
    return false;    
}
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Fig. 1. A binary tree method, and its symbolic execution using LI.

shows a sample partially symbolic heap, along with its path
condition, that would correspond to evaluating the if statement
in the first line of method search, on its “else” branch. Now,
when the condition in the second if statement is symbolically
evaluated, three branches are generated, according to LI: one
for the case in which this.left is null (structure (2)); one
in which this.left points to the only previously seen node
(structure (3)); and one in which this.left points to a new
node, with all its fields symbolic (field value is not shown for
simplicity). Notice how the second branch should be pruned,
since it violates the precondition, stating that this points
to a valid tree (more details on how this is implemented are
presented later on).

In the same way as paths have to be bounded for an exhaus-
tive exploration, heap size must be limited too. A maximum
number of objects, for instance, is a typical approach, that
when reached will limit the alternatives for LI to the first two
cases in the above-described alternatives (i.e., instantiating a
symbolic object to null or a previously observed object). We
will sometimes refer to this bound as the scope of the analysis.
For further details, we refer the reader to [15].

C. Feed-forward Neural Networks

Feed-forward neural networks are one of the most tradi-
tional and successful machine learning models. These learn-
ing mechanisms offer some key advantages, including their
remarkable ability to learn and model non-linear and complex
relationships in data, that are otherwise very complex to be
captured. Moreover, unlike many other prediction techniques,
neural networks do not impose any restriction on the input
data, such as how it should be distributed.

The main components of neural networks are its compu-
tational units called neurons. Each neuron receives inputs,
multiplies these inputs by the corresponding weights in its
incoming links, and then applies a mathematical function g,
called the activation function, that calculates the output o of the
neuron. A neural network is then simply a group of neurons,
connected by directed weighted links and arranged according
to a certain topology. In particular, in a feed-forward neural
network neurons are organized as a directed acyclic graph,
and thus information only travels forward in the network,

first through the input nodes (input layer), then through the
so-called hidden nodes (hidden layers), and finally through
the output nodes in the output layer. Often, neural networks
will have one hidden layer, since one layer is enough to
approximate many continuous functions [26], but there may
be many of them.

Feed-forward neural networks are primarily used for super-
vised learning problems [14], i.e., problems for which one has
a set of input-output pairs, and wants to approximate some
function f such that for every input of fixed size x, f(x) ≈ y,
with y being the output of the network. To approximate such
a function f , one first defines the architecture of the network.
Then, the network can be fed with the available inputs, and
the obtained outputs are compared with the expected ones,
slightly adjusting the weights of the neurons according to the
difference obtained between the expected and actual results.
Performing this task over and over for a sufficiently large num-
ber of available inputs will result in the network approximating
function f . A mechanism that is often employed to alter the
weights of all neurons in a network, including those in hidden
layers, is backpropagation [14].

Supervised learning problems where the function to be ap-
proximated has a boolean output (only two possible outcomes)
are called binary classification problems. The problem we deal
with in this paper is the classification of partially symbolic
structures as feasible (i.e., as a structure that can be concretized
to one satisfying a given precondition) or infeasible (i.e., a
structure for which any possible concretization would violate a
given precondition), and clearly falls in the category of binary
classification problems.

III. A MOTIVATING EXAMPLE

Consider again the binary tree example, depicted in Fig-
ure 1, in the previous section. Let us continue with this
example, and see in more detail the precondition of method
search. A typical implementation of such a precondition
is in an operational manner, with source code that checks
for acyclicity, as in isBinTree() in Figure 2. Clearly this
code is designed to perform on fully concrete structures, and
thus cannot be directly run on structures such as those of
Figure 1(b), since these have symbolic references as well as
symbolic values for basic datatype fields (recall that we did not
include in the figure the value field). One may, however, use
this operational specification on partially symbolic structures,
by attempting to run the code on such a structure, and if it is
sufficiently concrete so that the code executes without running
into a symbolic value/reference, return the corresponding
value; if not, simply return true.

Using this simple approach, the partially symbolic structure
(3) in Fig. 1(b) can be deemed infeasible; but its mirror
(left subtree symbolic, right subtree with a loop) would be
considered valid. The following, more general mechanism,
resolves this issue: start by attempting to run the code on
a partially symbolic structure; if it is sufficiently concrete
so that the code reaches a final state without running into
a symbolic value/reference, return true or false as appropriate;



public boolean isBinTree() {
Set visited = new HashSet();
visited.add(this);
LinkedList workList = new LinkedList();
workList.add(this);
while (!workList.isEmpty()) {

Node curr = workList.removeFirst();
if (curr.left != null) {

if (!visited.add(curr.left)) return false;
workList.add(curr.left);

}
if (curr.right != null) {

if (!visited.add(curr.right)) return false;
workList.add(curr.right);

}
}
return true;

}

public boolean hybridIsBinTree() {
Set visited = new HashSet();
visited.add(this);
LinkedList workList = new LinkedList();
workList.add(this);
while (!workList.isEmpty()) {

Node curr = workList.removeFirst();
if (curr.left != null && curr.left != symb) {

if (!visited.add(curr.left)) return false;
workList.add(curr.left);

}
if (curr.right != null && curr.right != symb) {

if (!visited.add(curr.right)) return false;
workList.add(curr.right);

}
}
return true;

}

Fig. 2. An implementation of isBinTree and its hybridized version.

if a symbolic value is found instead, backtrack and continue
execution. As opposed to the previous case, this case does
not necessarily overapproximate the precondition, since it will
depend on how the precondition code is structured, and what
its default return value is. But it has as an advantage that it can
be systematically produced from the code of the precondition,
i.e., we do not need to ask the developer to provide a “hybrid”
precondition (able to operate both on fully concrete structures
and partially symbolic ones), we obtain it from the provided
one. The “hybridized” version hybridIsBinTree() of
isBinTree() is also shown in Fig. 2.

The above described situation is the best case scenario
for the hybridization approach for preconditions, since the
obtained function perfectly characterizes partially symbolic
structures that can be extended into fully concrete structures
satisfying the original precondition; that is, the hybrid precon-
dition returns true if and only if the structure is fully concrete
and satisfies the precondition, or is partially symbolic and can
be extended into a fully concrete one satisfying the precondi-
tion. But this best-case scenario is rarely the case. Consider,
continuing with our example, the slight modification in which
the binary tree is also assumed to be balanced. Assume further
that the method that implements the precondition checks first
that the structure is indeed a binary tree, and then that it
is balanced, using the usual recursive procedure of checking
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Fig. 3. Symbolic execution using LI from a balanced binary tree.

balancedness of the two subtrees, and then comparing their
heights. Moreover, consider the structures in Figure 3, that
extend the symbolic execution in Figure 1. Structures 6 and 7
can be pruned using the hybrid precondition. But the feasibility
of structure 8, on the other hand, depends on various factors,
the bound on the size of the heap, or equivalently the bound
on the maximum length to consider on bounded paths, in
particular. In fact, notice that if the maximum number of nodes
is 3, then the structure should be considered infeasible, since
there is no way of concretizing the symbolic nodes such that
the tree becomes balanced, with the available resources.

Being able to prune as many as possible, and as early as
possible, of the infeasible paths, is crucial for the efficiency
and effectiveness of symbolic execution. This is due to the fact
that continuing infeasible paths will not only slow down the
symbolic execution process, but it will also lead to producing
spurious results in analysis, such as spurious violations to post-
conditions or invalid inputs for testing (inputs not satisfying
the corresponding precondition).

The aim of this paper is to contribute in exactly those
cases in which the hybrid precondition is not good enough
for infeasibility detection. Basically, we would like to build
some kind of “oracle”, able to determine whether a partially
symbolic structure can be concretized in a way that satisfies
a given precondition. The approach will use invariants of the
structure, rather than preconditions, since these are a common
core of all preconditions of methods of a given structure, and
thus the cost of generating these oracles can be amortized
across the analysis of all these methods. Our “oracles” for
discerning valid from invalid partially symbolic structures will
be generated using neural networks. This implies that we
will need to tolerate some imprecision in these oracles. The



imprecision that corresponds to accepting invalid structures
(i.e., false positives, considering infeasible program paths as
feasible) is already an issue in symbolic execution, e.g., due
to limitations in constraint solving technology (usually, when
solving a constraint is beyond the capabilities of the employed
constraint solver or times out, one may go on considering the
path as feasible). The imprecision that corresponds to wrongly
pruning feasible paths (false negatives), on the other hand, can
be considered more serious, since it will prevent symbolic
execution from being a conservative (bounded) analysis: an
analysis technique that may report infeasible violations, but
that, when no violations are reported, guarantees the absence
of violations (at least within the bounds for analysis). Notice
that this is, however, only important for symbolic execution
as a means for verification, but other applications of symbolic
execution, including test input generation and the estimation
of worst-case running times, do not require conservativeness.

The key is then on how (im)precise the resulting pruning
mechanism is: if it is too imprecise (letting many invalid cases
pass and rejecting many valid cases), then the approach is
worthless; but if the neural network achieves good precision,
then it has the potential of increasing the scalability of sym-
bolic execution (making it more efficient, allowing it to scale to
larger scopes, etc.), while losing a relatively small number of
valid executions and thus mildly affecting analyses such as test
generation and running time estimation. As we will show later
on in this paper, our neural networks achieve good precision
for a number of sophisticated heap-allocated data structure
implementations. Scaling to larger scopes is highly relevant,
since certain software defects only arise with sufficiently large
scopes. Estimations of software behaviors are in some cases
precise enough if run for sufficiently large scopes, too. For
instance, in self-balancing structures, rebalancing mechanisms
are only triggered with sufficiently large number of elements.
In a well studied implementation of binomial heaps, that was
thought to be correct, a bug arose when analysis was able to
reach scope 13 (binomial heaps with 13 nodes) [10]. In the
context of worst-case running time estimation as proposed in
[18], how far the required “exhaustive” symbolic execution
up to a given scope can go affects the computed policy used
for larger scopes, and the overall precision in the estimation;
for instance, scope 8 leads to wrongly estimating a quadratic
running time for TreeSet.add, and scope 9 results in out-
of-memory errors (see our replication package).

To train a neural network we need a mechanism to produce
valid and invalid partially symbolic structures. We will provide
two alternatives for the generation of the training set. The first
consists of producing valid/invalid partially symbolic struc-
tures by symbolically executing, using LI, the invariant of the
corresponding datatype. The second uses run-time generation:
it executes assumed correct building routines to build valid
structures, and mutates valid structures to build invalid ones.
For both alternatives, an abstraction/concretization mecha-
nism is applied: it builds additional valid partially symbolic
structures from generated valid ones, making symbolic some
concrete parts in the structures; and builds additional invalid
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Fig. 4. An overview of the technique.

structures by concretizing parts of generated partially symbolic
structures. Using these techniques, we generate sufficiently
large training sets for our approach. The details are described
in the next section.

IV. LEARNING A CLASSIFIER FOR PARTIALLY SYMBOLIC
STRUCTURES

In this section we present the details of our approach
based on defining and training a feed-forward neural network,
to learn to distinguish feasible partially symbolic structures
(i.e., those that can be extended to fully concrete structures
satisfying the given invariant) from infeasible, and then using
the neural network as a pruning mechanism during symbolic
execution. The workflow of the technique is shown in Figure 4.
As described earlier in this paper, in order to use a neural
network we will need to define a mechanism to automatically
generate the partially symbolic structures that will then be used
as the training set, propose an approach to represent these
structures as numerical vectors (so that these can be fed to
the network), and determine the architecture of the network
as well as the values for hyperparameters.

A. Generating the Training Set

Let us assume that we want to perform symbolic execution
on methods of a class C, for which a repOK routine, i.e, a
representation invariant [17], is already provided. In order
to train the neural network, sets of feasible and infeasible
partially symbolic structures of class C are generated, using
two alternative procedures. Intuitively, in both cases, feasible
structures are those for which there exists an assignment of
concrete values to each field holding a symbolic value, such
that the final structure satisfies the given repOK; infeasible
structures, on the other hand, are those for which there is no
such assignment. To do so, we implemented a symbolic heaps
generator with two different mechanisms. As we explain be-
low, the first mechanism uses the provided repOK to generate
the structures, while the second one is based on the use of
assumed-correct building routines.
RepOK-based mechanism. Our repOK-based mechanism to
generate partially symbolic structures for training is shown in



Algorithm 1. It starts by performing symbolic execution over
a given repOK. Every time a final state is reached, it is either
because the current structure s satisfies the repOK or not. In
the case that s satisfies the repOK, then it is added to the set Sf

of feasible structures, since it is clearly feasible. At this point,
s probably has most of its fields with concrete values (at least
the ones that are required to determine the satisfaction of the
repOK), so additional feasible partially symbolic structures are
automatically created from s, by randomly selecting concrete
values v in s, and replacing them by symbolic values. Notice
that this abstraction process is guaranteed to produce feasible
structures: s itself is the witness of feasibility of each of
the “less concrete” structures produced from s. Similarly,
when the final state of the symbolic execution finishes with
a structure s that does not satisfy the repOK, the structure is
added to the set Si of infeasible structures. In this situation,
the structure s will in general have some of its fields with
symbolic values, since often the repOK routine does not need
a fully concrete structure to determine that it is invalid. When
symbolic fields are present in s, additional infeasible partially
symbolic structures are created, by replacing some symbolic
fields in s by concrete values of the corresponding type.
Basically, this approach is sound because we maintain fixed
the part of s that led repOK to determine infeasibility; no
matter how we concretize the remaining symbolic values in s,
the structure will continue to be infeasible.

Algorithm 1: RepOK-based training set generation
Input: repOK of class C.
Output: the sets Sf and Si.

1 Function GEN-TRAINING-SET(repOK):
2 Sf ← ∅;
3 Si ← ∅;
4 Paths← SYMB-EXEC(repOK);
5 for p in Paths do
6 s← GET-SYMBOLIC-HEAP(p);
7 b← GET-OUTPUT(p);
8 if b then
9 Sf ← Sf ∪ {s}∪ ABSTRACT(s);

10 else
11 Si ← Si ∪ {s}∪ CONCRETIZE(s);

12 return 〈Sf , Si〉

API-based mechanism. Algorithm 2 implements our second
alternative for generating partially symbolic structures. This
API-based mechanism for structure generation works under
the assumption that a set of assumed-correct building routines,
e.g., constructors, insertion and deletion routines, is provided.
Since these methods are assumed to have correct implementa-
tions, they can be used to build valid, fully concrete, structures,
employing any run-time test input generation mechanism, e.g.,
random generation as implemented in tools like Randoop [21];
this is in fact the mechanism that we use to automatically
generate valid fully concrete structures in our evaluation. Once
a set of valid concrete structures is built, a set of valid partially
symbolic structures is created using the same abstraction

process as in the previous mechanism: replacing fields with
concrete values in valid structures, by symbolic ones. In order
to generate invalid partially symbolic structures, we first need
to create a set of invalid concrete structures. We do so from
the valid structures, as follows: given a valid structure s,
an object o reachable from s and a field f in o, the value
of o.f is mutated by randomly changing it to null or to a
previously seen value of the same type, and then verifying if
the resulting structure s′ is actually invalid; we do so by using
the provided repOK. Finally, from each invalid structure, a
set of infeasible partially symbolic structures is generated, by
maintaining the concrete part that caused the original structure
to be invalid (the “accessed fields”, in the terminology of [3],
traversed when running the failing repOK), but with some of
the remaining fields pointing to a symbolic value.

Algorithm 2: API-based training set generation
Input: a set B of assumed-correct building routines of class

C
Output: the sets Sf and Si.

1 Function GEN-TRAINING-SET(B):
2 Ts ← GEN-TEST-SUITE(B);
3 Cf ← EXECUTE-TESTS(Ts);
4 Ci ← ∅;
5 for c in Cf do
6 m← MUTATE(c);
7 if ¬ SATISFIES(repOK, m) then
8 Ci ← Ci ∪ {m};

9 Sf ← ∅;
10 for s in Cf do
11 Sf ← Sf ∪ {s}∪ ABSTRACT(s);

12 Si ← ∅;
13 for s in Ci do
14 Si ← Si ∪ {s}∪ ABSTRACT-INF(s);

15 return 〈Sf , Si〉

B. Partially Symbolic Structures as Vectors

Most implementations of neural networks require as inputs
vectors of values, which are in general restricted to numeric
types. In order to encode symbolic structures as vectors, we
adopt the candidate vector format of Korat [3]. We extend the
original representation, that only considers concrete values, to
support symbolic values too. Given a scope k, that defines
ranges for numeric types and maximum number of instances
for reference types, any instance of a class C within scope
k is represented in Korat by a vector containing a cell for
each object o′ : C ′ within the scope and field f of C ′. The
domain of each cell is a range of natural numbers, where each
value uniquely identifies an object/value within the scope. We
add a special value −1 to represent a symbolic value of the
corresponding type (determined by the index in the vector)
and a special value −2 to represent unexplored fields, i.e.,
fields that were not traversed, either because of a small size
of the structure or due to the presence of a symbolic value.
Consider, as an example, our binary tree example, and assume
that our analysis takes a scope of exactly one tree object, 3
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Fig. 5. A partially symbolic binary tree and its vector representation.

nodes, and size in the range 0..3. Input vectors will have, for
this scope, 8 cells, as shown in Figure 5 (we ignore the cell for
the receiver object, which will be in this case always initialized
to 1, representing the sole concrete object of type BinTree).
In this Figure, we also show a particular assignment for the
vector, and the partially symbolic structure it represents.

C. Neural Network Architecture and Training

Our approach is based on the use of a feed-forward artificial
neural network, whose input depends on the size of the vectors
encoding the partially symbolic structures. Assuming that the
size of the vectors is n, the input layer of our network
contains n input neurons, each one receiving a position of the
vector. The output layer will always have 1 neuron because
our classification problem involves 2 classes, the class of
feasible structures, and the class of infeasible ones. Only one
hidden layer is used. The remaining parameters of the network
such as the number of hidden units in the hidden layer and
the activation function of the neurons, are determined using
an optimization process known as random search [2]. More
precisely, we used this approach by launching 10 random
combinations of hyperparameter values, where, from all the
partially symbolic structures generated as described in Subsec-
tion IV-A, 75% were used for training, and the remaining 25%
were used to assess the performance of the neural network.
Then, we selected the combination that exhibited the best
performance. The level of precision that we achieved in our
experiments did not demand further tuning of the neural
network’s parameters (see the evaluation section).

Implementation. Our approach is implemented as an ex-
tension of Symbolic PathFinder [23]. Given a target program
with a (concrete) repOK and it’s “hybridized” version for the
corresponding data structure, standard Symbolic PathFinder
uses LI with the hybridized repOK for pruning infeasible
structures. Our neural network based approach (LI+NN) com-
plements LI, as follows: after calling the hybridized repOK
on a partially symbolic structure, if LI finds it feasible (i.e.,
LI lets the structure “pass”), we call the neural network to
check for further pruning (we let the structure “pass” if the
neural net accepts it). Our implementation uses the Python
Keras library [8] to build and train the neural networks, and
the Deeplearning4j open source Java library [12] to wrap
the keras models, in order to make them available in Java.

V. EVALUATION

The evaluation of our approach is organized around the
following research questions:

RQ1 How precise are the neural networks in detecting infea-
sible symbolic structures?

RQ2 Is generalized symbolic execution improved when incor-
porating the neural networks for further pruning?

RQ3 Does our approach improve symbolic execution based test
generation?

RQ1 analyzes the performance of the neural networks in
detecting infeasible symbolic structures. RQ2 evaluates the
impact of incorporating neural networks for further pruning
during LI (in terms of efficiency/effectiveness for generating
valid test data, and in comparison with standard LI). Finally,
RQ3 analyzes our approach in an application scenario, namely
automated test generation based on symbolic execution.

A. Evaluation Subjects

Our evaluation subjects are Java classes taken from the
generalized symbolic execution literature, whose methods han-
dle heap-allocated data that involve complex constraints. In
order to appropriately address RQ1 and RQ2, we need subject
methods for which perfect pruning information, i.e., a precise
ground truth on which are the valid and invalid partially
symbolic objects generated during symbolic execution, is
available. Thus, we took the subjects used as case studies
in [25], and considered as ground truth the pruning per-
formed by the BLISS technique. We considered the following
implementations featuring the fundamental methods of data
structures of varying complexities: BinTree, the binary tree
implementation discussed in our motivating example; TreeSet,
a red-black tree implementation of the Set abstract datatype,
from java.util; AVLTree, an AVL tree based implementation
of the Map abstract datatype; and BinomialHeap, a Binomial
Heap implementation of the Heap abstract datatype.

To address RQ3, we included case studies handling heap-
allocated data with complex conditions, most of which contain
either real or seeded bugs: Caching, a doubly linked list
implementation that caches node objects to improve efficiency,
from the Apache package commons.collections (used as case
study in [10], [4]); IntTreeSet, an integer Set implementation
over red black trees from KodKod [29], used for bug finding
in [19]; Schedule, a scheduler implementation from the SIR
repository, based on the use of doubly linked lists, also used for
bug finding in [19]; and Tsafe, the class TrajectorySynthesizer
of the TSAFE prototype, computing plane trajectories based
on position and light plan, used in [4].

B. Evaluation Setup

All our experiments were run on an octa-core Intel Core i7
CPU, running GNU/Linux 4.4.0 at 3.4Ghz, with 6Mb of cache
and 16Gb of RAM. 4 GB of heap memory were allocated for
the Java virtual machine. Further details and case studies, as
well as instructions to reproduce the experiments, can be found
in the replication package site of our technique [1].



TABLE I
PERFORMANCE ON SYMBOLIC STRUCTURES CLASSIFICATION

Subject S Precision (%) Recall (%)
LI NNrb NNab LI NNrb NNab

BinTree 4 100 100 52.63 100 100 100
5 100 100 61.66 100 100 100
6 100 100 45.79 100 100 100
7 100 100 80.42 100 100 100
8 100 100 44.77 100 100 100
9 100 100 29.6 100 100 100

TreeSet 4 100 69.23 64 77.77 100 88.88
5 100 70.58 50 88.88 100 88.88
6 100 82.31 69.46 76.85 100 95.86
7 100 85.92 62.80 85.05 100 96.55
8 100 89.27 56.25 82.21 100 100
9 100 89.31 57.11 81.94 100 100

AvlTree 4 100 100 74.19 72.41 100 79.31
5 100 100 96.36 86.88 100 86.88
6 100 100 88.46 89.04 94.52 94.52
7 100 98.75 70.08 68.20 99.58 82.84
8 100 100 58.31 84.68 99.64 94.62
9 100 100 80.94 86.50 99.78 96.20

BinomialHeap 4 100 95.23 60.52 86.95 86.95 100
5 100 100 52.63 92.00 92.00 100
6 100 100 65.07 96.32 96.32 100
7 100 100 62.98 97.93 97.93 100
8 100 100 69.75 98.63 98.63 100
9 100 100 71.84 98.79 98.79 100

AVG 100 95.02 63.56 89.62 98.50 96.02

C. Performance of the Neural Networks (RQ1)

To evaluate the performance of the neural networks in
detecting infeasible symbolic execution paths, we proceeded as
follows. First, for each subject/scope, we created the training
sets of valid/invalid symbolic instances using the procedures
described in Subsection IV-A. Then, we determined the net-
work architecture by using a random search process as de-
scribed in Subsection IV-C. After this, we obtained a neural
network NNrb, trained with the dataset generated using the
repOK-based mechanism, and a neural network NNab, trained
with the dataset generated using the API-based mechanism.
Finally, to assess the performance of these networks, we
measured the standard precision and recall metrics [27] using
as validation set the ground truth of valid/invalid symbolic
instances, obtained from previous work [25]. Precision repre-
sents the proportion of invalid instances that were correctly
detected by the network, with respect to the total number of
instances classified as invalid. Recall represents the proportion
of invalid, correctly classified, instances, with respect to the
total number of invalid instances (this includes the valid
symbolic structures incorrectly classified as invalid).

Table I summarizes the results of this first analysis. No-
tice how LI performs on these subjects: it achieves perfect
precision, since it only prunes actually invalid structures
(determined through the hybrid repOK); regarding recall, LI is
incapable of detecting many invalid symbolic structures for the

majority if the subjects (except for the BinTree subject, a case
in which the hybridized repOK is able to precisely identify
feasible/infeasible partially symbolic structures). Regarding
the performance of the neural networks, on the one hand, both
the NNrb and the NNab outperform LI in terms of recall. That
is, the neural networks are able to detect more invalid symbolic
structures, an average of 98.50% for the NNrb and 96.02% for
the NNab, compared to the 89.62% of LI. On the other hand,
the neural networks are less precise than LI, meaning that they
disregard (i.e., prune) a number of valid inputs. However, the
precision achieved by the NNrb technique is significantly better
than the precision of NNab.

Our experiment shows that the neural networks are very
effective in correctly identifying feasible/infeasible partially
symbolic structures. This is in keeping with the observations
in [30], that learning models are in general very good at
detecting structural properties. The technique can, however,
disregard (i.e., prune) a number of valid inputs, due to false
negatives. That is, the use of our approach might result in
part of the state space not being explored. This is acceptable,
as long as the wrongly pruned part is not significant and if
symbolic execution is used for non-exhaustive analyses, e.g.,
testing, since such analyses are inherently incomplete; but may
be unacceptable for verification. Our approach might also let
invalid inputs pass in some cases (due to false positives). This
is an issue that also affects LI, and that implies that these
techniques may generate spurious symbolic paths, i.e., it may
produce spurious test cases or report spurious bugs.

D. Impact on Generalized Symbolic Execution (RQ2)

To assess the impact on generalized symbolic execution, we
took the fundamental methods of the analyzed data structures,
and performed symbolic execution (for increasingly larger
scopes) with LI and LI+NN, to explore all supposedly fea-
sible bounded paths, and collect the corresponding structure
instances. Table II summarizes the results of these experi-
ments. For each method and scope (S), we report the exact
number of feasible structures (#Feas.), as reported in [25]
(the exact number of feasible structures is known as these
are computed in [25] from a declarative invariant using SAT
solving, preventing false positives or false negatives). Then,
for each technique, scope and method, we report the running
times (mm:ss) (using - to indicate that the timeout of 1 hour
was exceeded) and the corresponding number of reported
structures. Regarding running times, notice that in the case
of binary trees, LI+NN is less efficient; this is reasonable: as
we mentioned earlier in this paper, binary tree is a case where
there is no room for improvement with respect to LI (thus, our
technique constitutes an overhead for this case study). In the
rest of the cases, and as the scope is increased, our technique
outperforms LI, with a remarkable margin in some cases, AVL
in particular. With respect to the reported structures, thanks
to the further pruning, LI+NN is able to report far fewer
structures compared to LI.

Evaluating the impact of LI+NN in terms of running times
and reported structures can be misleading: our technique may



TABLE II
LI AND LI+NN ON GENERALIZED SYMBOLIC EXECUTION

Method S #Feas. Time Reported Structs Precision of LI+NN
LI LI+NN LI LI+NN Feas.(%) Spur.↓(%)

BinTree
bfs 6 196 00:01 00:02 196 196 100 0

7 625 00:02 00:04 625 625 100 0
8 2055 00:04 00:07 2055 2055 100 0
9 6917 00:13 00:19 6917 6917 100 0

10 23713 00:48 00:50 23713 14463 60.99 0
11 82499 03:13 02:11 82499 36259 43.95 0

dfs 6 196 00:01 00:02 196 196 100 0
7 625 00:01 00:04 625 625 100 0
8 2055 00:04 00:07 2055 2055 100 0
9 6917 00:13 00:18 6917 6917 100 0

10 23713 00:52 00:44 23713 14926 62.94 0
11 82499 03:23 01:42 82499 29776 36.09 0

TreeSet
bfs 6 26 00:01 00:03 196 185 100 6.47

7 55 00:04 00:06 625 560 100 11.4
8 95 00:13 00:06 2055 385 94.73 84.94
9 141 00:45 00:07 6917 619 61.7 92.14

10 217 02:40 02:47 23713 20875 98.61 12.06
11 407 10:28 11:09 82499 75684 96.06 8.28
12 863 38:50 35:18 290511 230512 84.47 20.66
13 1767 - 43:13 - 254537 66.77 ∞

add 6 26 00:44 00:14 26 24 92.3 0
7 55 03:57 00:41 55 52 94.54 0
8 95 23:47 01:30 95 78 82.1 0

remove 6 493 00:44 00:39 1542 1060 87.22 39.94
7 2229 02:51 02:36 5367 3966 86.72 35.21
8 8933 10:51 02:42 17957 3755 34.88 92.91
9 20242 40:14 05:40 58542 7983 28.08 93.99

AvlTree
contains 6 7 00:04 00:01 63 7 100 100

7 15 00:10 00:07 127 78 100 43.75
8 31 00:24 00:07 255 81 100 77.67
9 31 00:58 00:10 511 107 100 84.16

10 31 02:16 00:13 1023 139 100 89.11
11 31 05:21 00:12 2047 132 100 94.99
12 63 12:11 01:20 4095 634 100 85.83
13 127 29:44 11:16 8191 3287 95.27 60.73
14 255 - 15:04 - 4330 99.6 ∞

add 6 29 02:54 00:06 485 40 100 97.58
7 121 15:21 01:18 1383 204 72.72 90.8
8 441 14:52 08:37 3883 697 52.38 86.46
9 477 - 48:01 - 1500 80.29 ∞

remove 6 51 11:00 00:35 427 63 100 96,8
7 294 - 08:15 - 333 71.76 ∞

BinomialHeap
bfs 6 7 00:01 00:02 41 14 100 79.41

7 8 00:02 00:03 72 9 87.5 96.87
8 9 00:05 00:04 130 10 66.66 96.69
9 10 00:16 00:07 232 12 80 98.19

10 11 00:55 00:13 416 8 45.45 99.25
11 12 03:47 01:18 742 36 91.66 96.57
12 13 12:02 07:10 1328 241 100 82.66
13 14 52:09 04:50 2372 12 42.85 99.74

insert 6 49 05:57 06:11 51 51 100 0
7 105 34:24 32:13 107 82 76.19 0

AVG 84.12 46.98

be wrongly pruning a significant part of the search space, thus
exhibiting more efficiency but at the cost of less thoroughness
in the analysis. Although Table I suggests this should not
be the case, we also report the precision of LI+NN showing
the percentage of feasible structures (Feas.(%)) produced and

TABLE III
SYMBOLIC EXECUTION BASED TEST GENERATION

Method S Test cases Time
RepOK LI+NN RepOK LI+NN

Caching
removeIndex 4 6 54 00:00 00:01

5 12 64 00:00 00:01
6 20 66 00:00 00:01

IntTreeSet
add(err1) 4 456 377 00:16 00:11

5 916 1032 01:07 00:32
6 2344 3376 04:58 02:08

remove(err1) 4 352 257 00:14 00:07
5 876 695 00:57 00:19
6 2147 2148 04:19 01:12

add(err7) 4 356 387 00:16 00:10
5 888 992 01:03 00:27
6 2176 3060 04:42 01:43

remove(err7) 4 241 259 00:11 00:06
5 589 673 00:46 00:17
6 1414 2056 03:43 01:04

Schedule
upgrade 4 1202 145 02:45 00:06

5 2244 191 05:15 00:06
6 3876 257 09:17 00:06

TSafe
getRouteTrajectory∗ 3 1 1 20:52 21:07
TOTAL 20116 16090 1:00:41 29:47
∗ The execution was performed until the bug was revealed.

the reduction of spurious structures achieved (Spur.↓(%))
compared with LI. Notice that LI can only prune infeasible
structures. Thus, it always produces 100% of the actual
feasible structures, but the number of spurious structures can
be high for the most complex cases. LI+NN, on the other
hand, although it incorrectly prune some cases, as this table
confirms, it still produces a high percentage of the feasible
structures (84.12% on average) while achieving a significant
reduction of the spurious structures (46.98% on average).

E. Symbolic Execution based Test Generation (RQ3)

RQ3 evaluates our technique in a particular application
scenario, symbolic execution based test generation. For the
evaluation, we took a different set of case studies. These sub-
jects only have a repOK without a corresponding hybridized
version. Thus, we compare two alternative ways of generating
test inputs. Firstly, for each target method m and scope
(S), we first perform symbolic execution using as driver the
following code snippet: if (repOK()) { m(); }, and
then we count all the generated inputs reaching the end of the
method. Secondly, we perform test generation by symbolically
executing only the target method (without considering the
repOK) using LI+NN. In this second approach, we use the
neural network to complement the LI pruning.

Table III shows the results of this experiment. For each
method and scope, we report the obtained test cases and
the symbolic execution running times, using the above code-
snippet (if-repOK) and our approach (LI+NN). Our technique



generated tests more efficiently, taking 29:37 (min:sec) com-
pared to the 1:00:41 that the if-repOK approach required. Both
approaches report similar numbers of tests cases (16090 of
LI+NN, compared to the 20116 produced by the if-repOK
approach). In summary, our technique enables an alternative
way of performing symbolic execution based generation, that
is more efficient in a number of subjects (notably IntTreeSet
and Schedule). The main reason for the difference in perfor-
mance has to do with if-repOK needing to eagerly concretize
the heap objects, while LI+NN lazily concretizes heap object
are these are accessed by the target method.

F. Limitations

Our LI+NN technique has a limitation: even when the neural
network based pruning would allow us to scale symbolic
execution to larger scopes, we are constrained by the largest
scope we are able to symbolically execute repOK on (since
we need to do so to obtain the training set). This is where
alternative mechanisms to generate the training set become
necessary. Our second mechanism to generate the training set
is based on executing building routines and mutating valid
structures, and can scale better than symbolic execution on
repOK. This pays, however, a cost in precision, since the
obtained training sets are less thorough. In Table II we have
identified with ∗ the cases for which the used network was
trained with the building routines approach. For instance, in the
case of method bfs of TreeSet, we trained with repOK-based
sets up to scope 9, and from that point on, we used training
sets obtained with building routines and structure mutation.

VI. RELATED WORK

Symbolic execution, as a technique for automated analysis,
is gaining increasing attention, and it is essential for the tech-
nique to effectively handle heap-allocated datatypes. The prob-
lem of symbolically executing code handling heap-allocated
datatypes has been investigated by various researchers, and
generalized symbolic execution via lazy initialization, as in-
troduced in [15], is the main technique for doing so in
the presence of operational invariants/preconditions. Improve-
ments to this approach explore different directions: substituting
operational specifications by specialized logical languages
that can be subject to constraint solving [5]; introducing
precomputed bounds to reduce the number of nondeterministic
choices in lazy initialization [11], and complementing opera-
tional specifications with equivalent declarative specifications
to exploit SAT Solving [25], are some known enhancements
to generalized symbolic execution. These works differ from
our current approach in the fact that they either require an
additional specification, as well as the (costly) computation
of infeasible cases from these descriptions [11], [25], or
they replace the use of operational specifications altogether,
introducing new specialized specification languages, that have
to be mastered to exploit the associated techniques [5]. The
main requirement for the application of our technique is the
provision of an operational (repOK) specification, and/or the
provision of assumed correct building routines, to generate

the training sets. Our technique does pay a price in losing
soundness, compared to the cited approaches.

Learning techniques have been applied to discovering spec-
ifications of complex data structures, in particular in relation
to shape predicates [31], and in the binary classification of
valid/invalid structures [19]. The learning problem is however
different from ours, since in those works specifications are dis-
covered from program behaviors, on fully concrete structures.
In our case we do count with a specification for fully concrete
structures, and need to learn a classifier for partially symbolic
ones. Other applications of non-symbolic artificial intelligence
techniques in combination with symbolic execution, include
the use of evolutionary computation to build tests, composed
of method sequences, guided by path conditions collected
through symbolic execution [4].

VII. CONCLUSION

As symbolic execution gains relevance as a program analy-
sis technique, and finds increasing adoption both in academic
and industrial settings, the need for effective approaches that
broaden the technique’s applicability becomes apparent. In
particular, the possibility of applying symbolic execution on
custom heap allocated data abstractions is highly relevant,
and at the same time technically very challenging. We have
introduced an approach to improve lazy initialization, one of
the main techniques for symbolically executing code handling
heap-allocated data. The technique is based on learning a
classifier for partially symbolic data, that can be used to
identify infeasible (invalid) partially symbolic heaps and prune
symbolic execution’s search space. As opposed to related
techniques, this approach does not demand further effort
from the engineer: no extra specifications besides the usual
operational specification of the data being handled, is required.
This standard specification is exploited to produce training
data, that is fed to a neural network, then used for identifying
invalid partially symbolic heaps and opportunities for pruning
symbolic paths. Alternatively, a set of assumed-correct build-
ing routines can be used to generate the training set. However,
the introduced technique, whichever the training set approach,
is unsound, in the sense that that it may lead to pruning
feasible paths (this is in contrast to most known enhancements
to symbolic execution, which only prune infeasible cases).

We have compared our technique with lazy initialization,
on a number of data structures of varying complexities. Our
results show that our learning approach can very precisely
distinguish feasible from infeasible partially symbolic heaps,
helps in improving the detection of infeasible symbolic paths,
and reduces symbolic execution running times.
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