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ABSTRACT
The effectiveness of a test suite in detecting faults highly depends on
the correctness and completeness of its test oracles. Large Language
Models (LLMs) have already demonstrated remarkable proficiency
in tackling diverse software testing tasks, such as automated test
generation and program repair. This paper aims to enable discus-
sions on the potential of using LLMs for test oracle automation,
along with the challenges that may emerge during the generation
of various types of oracles. Additionally, our aim is to initiate dis-
cussions on the primary threats that SE researchers must consider
when employing LLMs for oracle automation, encompassing con-
cerns regarding oracle deficiencies and data leakages.
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1 INTRODUCTION
The goal of software testing is to find defects. To actually find
defects, though, test suites require relevant test inputs, i.e., inputs
that can exercise the software under test (SUT) in realistic scenarios.
Furthermore, to ensure that the SUT exhibits the expected behavior
for these inputs, accurate test oracles are required. The problem
of automating the generation of test oracles, the so-called oracle
problem [4], has become very relevant in the last decades, as it has
the potential to improve the oracles used in the testing process, and
therefore contributing to revealing defects in software.

Various approaches have been proposed to address the oracle
problem by automatically deriving different kinds of oracles [1, 3,
5, 9, 10, 22, 23, 35, 40], including test assertions, contracts (such as
pre/postconditions and invariants) or metamorphic relations. Gen-
erally, these approaches observe some artifact related to the SUT
(documentation, comments, source code, executions) and then de-
rive oracles that are consistent with the observations. For example,
TOGA [9] observes the source code of a target test and a focal
method (method under test) and infers a test assertion for the given
test; MeMo [5] extracts metamorphic relations by observing natural
language comments in the source code; Daikon [10] and related
tools [22, 23, 35] observe the behavior of the SUT (from a set of
tests) in order to infer class invariants and pre/postconditions.
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Despite all these efforts, the problem of automatically deriving
oracles is still an open research problem in software testing [4].
The main reason is that automatically derived oracles are rarely
accurate. These accuracy issues can result in high false positive
rates, which can lead to false alarms and reduce the trustworthiness
of the testing process. Indeed, recent studies have shown that even
state-of-the-art neural based approaches can produce oracles with
high false positive rates [13].

Large Language Models (LLMs) have already been used in tack-
ling diverse software testing [38], demonstrating remarkable profi-
ciency, particularly in tasks such as automated program repair [11,
16, 41] and automated test generation [18, 27, 29]. Given the posi-
tive results, researchers have also started to explore the use of LLMs
to automatically generate test oracles, mainly in the form of test
assertions [24, 25, 37]. Although the initial results are promising,
showing that generated assertions can improve test coverage [37]
and some lexical/functional metrics [25], there are still aspects of
LLM-generated oracles that need to be further explored.

This paper aims to enable discussions on the use of LLMs for test
oracle automation in general (not only test assertions) by discussing:

• the potential of LLMs for test oracle automation (including
oracles that go beyond test assertions, such as contracts or
metamorphic relations) and the challenges when using the
LLMs through prompt engineering or by pre-training or
fine-tuning them; and

• the main threats that arise from the use of LLMs to generate
different kinds of oracles, including oracle deficiencies and
privacy-related issues related to data leakages, and how we
can mitigate such threats.

2 LLMS FOR ORACLE AUTOMATION
The most straightforward application of LLMs for oracle automa-
tion involves prompt engineering, wherein a prompt is designed to
instruct any state-of-the-art pre-trained model, such as ChatGPT-
3.5 [26] or Llama2 [36], to produce an oracle. Themajority of studies
in the literature that utilize LLMs for software testing tasks, as well
as for other applications in general, concentrate on two primary
strategies for prompt engineering: zero-shot learning and few-shot
learning [38]. Zero-shot learning consists of providing a prompt ask-
ing the model for results, e.g., “Generate assertions for the following
test: ...”. Few-shot learning, instead, consists of providing a set of
high-quality examples to the model. For instance, one could provide
a set of test-assertion pairs for the model to generate assertions for
a given test.

A more sophisticated approach to oracle automation via LLMs
involves pre-training or fine-tuning. Pre-training entails training
the model on a broad distribution of data to predict the subsequent
token in a sequence. Conversely, during fine-tuning, the weights of
a pre-trained model are adjusted by retraining it on a designated
dataset tailored for a specific task. A clear example of this approach
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has been proposed by Tufano et al. [37], where an LLM is pre-
trained with a large source code and English language corpora, and
then fine-tuned for generating assert statements.

Regardless of the strategy used, generating oracle via LLMs re-
quires the use of data related to the expected oracles, either to build
prompts or to pre-train or fine-tune the model. Various sources of
pertinent information (such as source code, test code, documenta-
tion, logs, etc.) may be utilized to feed the LLMs. However, the type
of information employed will also vary based on the type of oracle
intended to be generated, thereby presenting distinct challenges.
For instance, employing a zero-shot learning approach to produce
a test assertion for a given test merely requires furnishing a prompt
containing the test case and instructing the model to expand it with
assertions. Applying the same methodology to generate broader
oracles, such as postconditions for a method, necessitates a more
detailed prompt. In addition to incorporating the method code, one
must also specify the formalism or language for articulating the
contract (e.g., as a code fragment, an assert statement, a logical
expression, etc.).

To properly illustrate these challenges, we now consider themost
common types of automatically inferred oracles: test assertions,
contracts, and metamorphic relations.

2.1 Test Assertions
Test assertions in unit tests check the expected behavior of the SUT
in a specific scenario, and are typically expressed as code. Given
their importance for having high quality test suites, the automated
generation of test assertions has been widely studied, including
approaches that pre-train and fine-tune the models [25, 37]. Tufano
et al. [37] pre-trained a BART Transformer model [19] with a large
corpus of English text and Java code, and then fine-tuned it on the
task of generating assert statements for unit test cases. Similarly,
TeCo [25] fine-tunes the CodeT5 [39] and CodeGPT [20] LLMs
specifically for the test completion task (i.e., predict the next state-
ment in a test case), which are then evaluated for assert statement
generation from the code under test (including the method under
test), the test method signature, and the prior statements before the
assertion statement.

These approaches can achieve an exact match rate (percentage
of generated assertions that exactly match the expected assertions)
of up to 62%. The recent improvements achieved by state-of-the-art
LLMs enable the use of such models for generating test assertions
using a more straightforward approach, such as zero-shot learning.
Consider for example the test in Figure 1, which shows a very
simple test case for a Stack class, with a unique test assertion
checking that the stack is not empty after three push operations
and one pop operation.

public void testPop() {
Stack<Integer> stack = new Stack<>();
stack.push(2);
stack.push(3);
stack.push(5);
stack.pop();
assertFalse(stack.isEmpty());

}

Figure 1: A simple test for a Stack class.

If we provide the prompt “Extend the following Java test just
with assert statements: + test-code” where test-code is the test
testPop, ChatGPT-3.5 produces the following assertions:

assert !stack.isEmpty() : "Stack should not be empty after pop";

assert poppedElement == 5 : "Popped element should be 5";

also checking that the popped element is 5 (ChatGPT-3.5 edited the
test to save the result of pop in the variable poppedElement). In
fact, Nashid et al [24] recently proposed a technique for prompt
creation based on embedding or frequency analysis, that can achieve
an exact match rate of 76% in test assertion generation.

2.2 Contracts
Contracts [21] are logical constraints on a specific software ele-
ment (method, class, etc.), and are usually captured in the form of
preconditions and postconditions for methods, or representation
invariants for classes. As opposed to test assertions, contracts are
not specific to a particular test case, but rather express properties
that must hold for any execution. Moreover, contracts can be ex-
pressed in different formalisms, not only in the same language as
the SUT. For instance, JML [6] is a popular library for Java that
includes a language for writing contracts as annotations in the
source code. Daikon [10], a well-known tool for dynamic invariant
detection, produces pre/postconditions and class invariants using
its own language (a mix of Java, and mathematical logic). Other
contract inference tools also use their own languages [22, 23, 35].

To the best of our knowledge, there are still no studies using
LLMs to generate contracts. To give an idea on how LLMs could be
used for this task, let us consider an implementation of the push
operation for a Stack class, shown in Figure 2.

public void push(E e) {
if (size == elements.length) {
ensureCapacity();

}
elements[size++] = e;

}

Figure 2: Implementation of a push operation for a Stack.

The code first ensures that there is enough capacity in the
elements array, and then pushes the element in the next available
position. A contract for this method could include a postcondition
stating that the size of the stack is increased by one, and that the
element is added at the top (size-1) of the stack.

The variety of formalisms for expressing contracts poses a chal-
lenge when using LLMs, mainly because one would also need to
specify the formalism in which the contract must be expressed.
State-of-the-art pre-trained models have the potential of producing
contracts with a reasonable performance, using a prompt engineer-
ing approach, at least for well-established formalisms. For instance,
with the zero-shot prompt “Generate a postcondition in the form
of an assert statement for the following method: + method-code”,
where method-code is the push method in Figure 2, ChatGPT-3.5
produces the following postcondition:

assert elements[size - 1].equals(e) : "Element was not

successfully pushed onto the stack.";



Test Oracle Automation in the era of LLMs SE 2030, November 2024, Puerto Galinàs (Brazil)

Note that although the postcondition captures one expected
property, its execution will crash if the pushed element is null.
Similarly, if we ask for the postcondition to be expressed in JML,
the model produces the same postcondition.

However, for less known formalisms or subjects with a more
complex API, using a few-shot prompt, or even pre-training and
fine-tuning the model, could be more appropriate. While using a
few-shot prompt would require one to provide a set of examples of
the expected contracts (e.g., a set of methods with their contracts
expressed in the desired formalism), the use of pre-training or fine-
tuning would require one to provide a specific and extensive dataset
for contract inference, including the software element (method or
class), the expected contract, and possibly other contextual infor-
mation related to the contract to learn.

2.3 Metamorphic Relations
Metamorphic relations express domain-specific properties of mul-
tiple executions of the SUT [30]. Compared to test assertions and
contracts, they are more general oracles that are easy to define and
mantain. Some examples of metamorphic relations involving two
executions are 𝑝 (𝑥,𝑦) = 𝑝 (𝑦, 𝑥) for a commutative operation 𝑝 , or
𝑠𝑜𝑟𝑡 (𝑎) = 𝑠𝑜𝑟𝑡 (𝑏) for a sorting operation where 𝑎 is a permutation
of 𝑏. Since its introduction by Chen et al. [8], metamorphic relations
have been successfully used for detecting bugs in a variety of soft-
ware systems, including the search engines Google and Bing [42]
and the Web APIs of Spotify and YouTube [31]. Moreover, meta-
morphic relations have shown to be complementary to other types
of oracles, such as test assertions, to detect faults in the SUT [5].

According to the literature [30], metamorphic relations are ex-
pressed through some formalism that allows to capture the expected
relationship between the inputs and outputs. Metamorphic rela-
tions are typically instantiated in a test case, where a source test
(e.g., 𝑎1 = 𝑠𝑜𝑟𝑡 ( [1, 3, 2])) is executed, then a follow-up test (e.g.,
𝑎2 = 𝑠𝑜𝑟𝑡 ( [2, 1, 3])) is executed, and finally the relation is checked
(𝑎1 = 𝑎2) [32].

For the inference of metamorphic oracles, the use of LLMs has
not yet been explored. Using LLMs to generate metamorphic re-
lations can be challenging, mainly because of the domain-specific
knowledge required to identify the relations, and the lack of well-
defined formalisms to express them. A straightforward approach
could be enabled in the case that the SUT already contains a set of
test cases, as these could be used as source tests to ask an LLM to
generate follow-up tests that preserve some relation with respect to
them. For example, using the zero-shot prompt “Generate a follow-
up test that is equivalent to the following test + test-code” with
the testPop test from Figure 1, ChatGPT-3.5 produces a test with
exactly the same operations, and two additional sentences:

stack.push(7);

stack.pop();

The produced follow-up test is equivalent to the source test in the
sense that both result in the same stack. It is easy to see that the
metamorphic relation behind states that for every stack, if we push
an element and then pop it, the stack remains the same. Using
both tests, one could easily implement a new test to check the
metamorphic relation by first executing the source test, then the
follow-up test, and finally checking that the stacks are equal.

If a set of test cases is not available, or one wants to focus on
generating the metamorphic relation itself (instead of its implemen-
tation), one would need to include in the communication with the
LLM how the relations should be expressed. For this scenario, a
few-shot prompt or a pre-training and fine-tuning approach would
be necessary. Independently of the kind of oracle we are generating,
it is evident that LLMs have an enormous potential to assist in ora-
cle automation. However, as we discuss in the next section, the use
of LLMs for this task not only inherits some threats from previous
techniques that can affect the quality of the produced oracles, but
also introduce new threats that need to be considered.

3 THREATS TO VALIDITY
3.1 Oracle Deficiencies
The quality of an oracle can be assessed in terms of its oracle
deficiencies: false positives and false negatives [15]. Intuitively, a
false positive is a correct and expected program state for which
the oracle is false, i.e., a false alarm. A false negative is an incorrect
and unexpected program state for which the oracle is true, i.e., a
missed fault. While false negatives are more tolerable, as one can
still fix the oracle to improve its fault detection capability, false
positives are more critical, as they can lead to false alarms resulting
in unnecessary debugging efforts.

Failing to identify and eliminate false positives may result in
high false positive rates, and raise concerns about the practical
usefulness of the tools [13]. To mitigate this, we consider that as-
surance mechanisms post-processing LLM-produced oracles are
imperative to provide guarantees on their quality, and may be cru-
cial to minimize oracle deficiencies. Alshahwan et al. [2] recently
proposed the notion of Assured LLM-based Software Engeering (As-
sured LLMSE) with the aim of providing guarantees on the output
produced by LLMs used for software engineering tasks. Figure 3
shows an overview of how Assured LLMSE could be applied to
LLM-based oracle generation, where the LLM-produced oracles are
subjected to an assurance process, possibly analyzing deficiencies.
The assurance process can also provide information to re-prompt
the model with those oracles that do not pass the process.

As LLMs offer absolutely no guarantees on their outcome, the
assurance process could first easily eliminate syntactically incorrect
oracles. Detecting oracle deficiencies, however, is more challenging.
False positives detection depends on the usage context. If the oracles
are for regression testing, i.e., to equip the current version of the
SUT with oracles in order to detect regression errors in the future,
to detect false positives one can search for a reachable program
state (test case) in which the oracle fails. For example, GAssert [35]
uses evolutionary computation to actively search for test cases that
falsify a given assertion oracle. On the other hand, if the oracles
are intended to test the current implementation, the detection of
false positives may require a human to decide whether an oracle
failure indicates a false positive or a real bug.

Once false positives are detected, one can fix the oracle either by
removing the parts that are incorrect, or by weakening the oracle
to make it more general. This could enable an iterative process, pos-
sibly re-prompting the LLM, in which the oracle is refined until no
more false positives are detected. This iterative refinement process
has already been applied for postcondition assertions [35].
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Figure 3: Overview of LLM-based Oracle Generation.

Although false negatives are less critical, their detection can help
to strengthen the oracle, improving its fault detection capability.
As false negatives are essentially faulty program states missed by
the oracle, mutation analysis can be used to introduce artificial
faults, and then check if the oracle can detect them. While some
approaches use mutation analysis to improve the oracles during
the inference process [12, 22, 35], others use it as an evaluation
technique for fault detection analysis [1, 5]. Similarly, LLM-based
techniques could also benefit from false negatives analysis.

3.2 Oracle Leakages
The use of LLMs for software engineering tasks has several threats,
including closed-source models, data leakages between training
data and research evaluation, and reproducibility issues [28]. Among
these, data leakages is particularly relevant for LLM-based oracle
automation, specifically during the evaluation of these approaches.

As LLMs are trained on very large amounts of data, often in-
cluding publicly available code from GitHub [7], there is a risk that
the model has memorized some code samples from the training
data [14]. Thus, when evaluating LLM-based techniques for oracle
automation, we need to pay special attention to the data we use for
evaluation, as we may end up obtaining oracles that are not actually
created by the model, but rather replicated from the training data.

To illustrate this issue, let us consider Defects4J [17], one the
most widely-adopted benchmarks in software testing research.
Many of the projects involved in Defects4J are publicly available on
GitHub. Thus, evaluating LLM-based oracle generation techniques
on Defects4J can clearly lead to oracle leakages, and make the LLM
provide accurate oracles just because they are a copy of the oracles
from the training data. Figure 4 shows an example of a test prefix
(i.e., the first part of a test without the assertions) from the Apache
Commons Collections project in Defects4J, available in revision
7c99c62 of the project repository1, and the test assertions gener-
ated by ChatGPT-3.5. With the prompt “Complete the following
Java test with test assertions: + test-code”, ChatGPT-3.5 produces
exactly the same assertions as in the original test case, with the
sole difference that natural language messages to explain the ex-
pected behavior are included. Moreover, the model uses the search
method from the ArrayStack class in the assertions, which avail-
ability was not even informed in the initial prompt.

To mitigate oracle leakages in the evaluation of LLM-based tech-
niques for oracle automation, one could consider using evaluation
data from multiple sources, as recommended by Sallou et al. [28].

1https://github.com/apache/commons-collections

public void testSearch() {
final ArrayStack<E> stack = makeObject();
stack.push((E) "First Item");
stack.push((E) "Second Item");

-----------------------------------------------------------------
// Test searching for existing elements
assertEquals(2, stack.search("First Item")); // First Item is
at index 2 from the top

assertEquals(1, stack.search("Second Item")); // Second Item
is at index 1 from the top

// Test searching for non-existing element
assertEquals(-1, stack.search("Non-existing Item")); //
Non-existing Item is not found in the stack

Figure 4: Test from Defects4J, and the assertions produced
by ChatGPT-3.5.

SourceForge projects are potentially a good source of data for eval-
uation, as they have been shown that LLMs can have a worse
performance on them compared to GitHub projects [33]. Moreover,
one could also consider the use of datasets containing code pro-
duced after the models training, to ensure that the evaluation code
has not been seen by the model. For example, GitBug-Java [34] is a
recent benchmark of recent Java bugs built with 2023 code, which
is after the cut-off date of the training data of most of the notable
LLMs, including OpenAI models.

4 CONCLUSION
Thanks to the ability of LLMs to quickly generate content, either
as code or as specifically formatted text, they have an enormous
potential to improve software testing tasks.In this paper, we discuss
the potential of LLMs for test oracle automation, along with insights
to deal with the challenges present in the use of the LLMs for
inferring different types of oracles.

We also discuss the main threats that arise from automatically
generating oracles using LLMs. Using the LLMs without an assur-
ance process can result in low quality oracles, containing a high
number of oracle deficiencies, mainly false positives, which can
reduce the trustworthiness of the testing process. Moreover, new
threats can emerge from the use of LLMs, such as oracle leakages,
which can lead to the generation of oracles that are not actually
created by the model, but are rather replicated from the training
data.

We believe that an Assured LLM-based Software Engineering
approach can be a promising direction to mitigate the threats of
LLM-based oracle generation, and to provide guarantees on the
quality of the oracles produced.

https://github.com/apache/commons-collections
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