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Abstract—Software reliability is a primary concern in the
construction of software, and thus a fundamental component in
the definition of software quality. Analyzing software reliability
requires a specification of the intended behavior of the software
under analysis, and at the source code level, such specifications
typically take the form of assertions. Unfortunately, software
many times lacks such specifications, or only provides them
for scenario-specific behaviors, as assertions accompanying tests.
This issue seriously diminishes the analyzability of software with
respect to its reliability.

In this paper, we tackle this problem by proposing a technique
that, given a Java method, automatically produces a specification
of the method’s current behavior, in the form of postcondition
assertions. This mechanism is based on generating executions of
the method under analysis to obtain valid pre/post state pairs,
mutating these pairs to obtain (allegedly) invalid ones, and then
using a genetic algorithm to produce an assertion that is satisfied
by the valid pre/post pairs, while leaving out the invalid ones.
The technique, which targets in particular methods of reference-
based class implementations, is assessed on a benchmark of
open source Java projects, showing that our genetic algorithm
is able to generate post-conditions that are stronger and more
accurate, than those generated by related automated approaches,
as evaluated by an automated oracle assessment tool. Moreover,
our technique is also able to infer an important part of manually
written rich postconditions in verified classes, and reproduce
contracts for methods whose class implementations were auto-
matically synthesized from specifications.

I. INTRODUCTION

The quality of software systems is typically defined around
various dimensions, such as reliability, usability, efficiency,
etc. Among these, reliability is in general considered a fun-
damental attribute of software quality, and a primary concern
in software development [12], [16]. Analyzing software re-
liability is strongly related to finding software defects, i.e.,
actual software behaviors that diverge from the expected
behavior. Discovering such defects requires one to state what
the expected behavior is, in other words, a specification of the
software. Many times such specifications are either implicit,
or stated informally, diminishing the possibility of exploiting
specifications for (automated) reliability analysis.

Software specifications can appear in different forms. At the
level of source code, when present, they generally manifest
either as comments, i.e., informal descriptions of what the
software is supposed to do, or more formally as program
assertions, i.e., (usually executable) statements that assert
properties that the software must satisfy at certain points

during program executions. The former are more common,
but cannot be straightforwardly used for automated reliability
analysis. The latter, on the other hand, are readily usable for
program analysis, especially when stated as contracts [21], but
they are seldom found accompanying source code. Moreover,
many times program assertions state scenario-specific proper-
ties, e.g., statements that only express the expected software
behavior for a test case, as opposed to the more general,
and also significantly more useful, assertions associated with
contract elements such as invariants and pre/post-conditions.

Due to the above described situation regarding specifications
at the level of source code, the specification inference problem
(a special case of the well known oracle problem [3]), i.e.,
taking a program without a corresponding specification and
attempting to automatically produce one that captures the
program’s current behavior, is receiving increasing attention by
the software engineering community. Automatically inferring
specifications from source code is a relevant topic, as it enables
a number of applications, including program comprehension,
software evolution and maintenance, bug finding [31], and
specification improvement [31], [15], among others.

In this paper, we tackle this problem by proposing a
technique that, given a Java method, automatically produces a
specification of the method’s current behavior, in the form
of postcondition assertions. This mechanism is based on
generating valid and invalid pre/post state pairs (i.e., state
pairs that represent, and do not represent, the method’s current
behavior, respectively), which guide a genetic algorithm to
produce a JML-like assertion characterizing the valid pre/post
pairs, while leaving out the invalid ones. The generation
of valid pre/post pairs is based on executing the method
on a bounded exhaustive test set, generated by exercising
the method inputs’ APIs using user-defined ranges for basic
datatypes, and bounding their execution sequences. The invalid
pre/post pairs, on the other hand, are obtained by mutating
valid pairs, i.e., arbitrarily modifying the post-states so that
each resulting pair does not belong to the set of valid pairs.
This mutation-based approach to generate invalid pairs is
unsound, in the sense that it may lead to valid pairs instead, an
issue that may affect the precision of the produced assertions.
As we describe later on, the design of our genetic algorithm
takes it into account. Because of the assertion language we
consider, that involves quantification, object navigation and
reachability expressions, our approach is particularly well-



suited for reference-based class implementations with (im-
plicit) strong representation invariants, such as heap-allocated
structural objects, and complex custom types.

We assess our technique on a benchmark of open source
Java projects taken from [11], featuring complex implemen-
tations of reference-based classes. In these case studies, our
genetic algorithm is able to generate post-conditions that are
stronger and more accurate, than those generated by related
specification-inference approaches, as evaluated by OASIs,
an automated oracle assessment tool [15]. Moreover, our
technique is also able to infer an important part of manually
written rich postconditions (strong contracts used for verifica-
tion) present in verified classes [37], and reproduce contracts
for methods whose class implementations were automatically
synthesized from specifications [19].

II. BACKGROUND

A. Assertions as Program Specifications

The use of assertions as program specifications dates back
to the works of Hoare [13] and Floyd [9], in the context
of program verification and associated with the concept of
program correctness. Technically, an assertion is a statement
predicating on program states, that can be used to capture
assumed properties, as in the case of preconditions, or intended
properties, as in the case of postconditions. A program P
accompanied by a precondition pre and postcondition post is
said to be (partially) correct with respect to this specification,
if every execution of P starting in a state that satisfies pre, if it
terminates, it does so in a state that satisfies post [13]. That is,
every valid terminating execution of P , i.e., every execution
satisfying the requirements stated in the precondition, must
lead to a state satisfying the postcondition.

While program assertions originated in the context of
program verification, they soon permeated into programming
languages constructs and (informal) programming methodolo-
gies. More recently, they have been central to the definition
of methodologies for software design, notably design by
contract [22]. Most modern imperative and object-oriented
programming languages support assertions, either as built-in
constructions [23] or through mature libraries such as Code
Contracts [2] and JML [5]. Moreover, libraries for unit testing
make extensive use of assertions to automate checking the
expected results of running a test case.

Preconditions are more commonly seen in source code, e.g.,
within methods in the form of state and argument checks,
throwing appropriate exceptions when these are found invalid,
preventing normal execution. Postconditions, on the other
hand, are less common. Post-execution checks are commonly
seen as part of test cases, although they rarely capture
postconditions, in the sense of general properties that every
execution must satisfy on termination; post-execution checks
in tests generally state properties that should be satisfied for
the specific test where they are stated.

The assertion language that we consider in this paper is,
from an expressiveness point of view, a JML-like [5] contract
language. More precisely, we follow the approach used in

[17], and use the Alloy notation [14]. The language supports
quantifiers, navigation and reachability expressions including
navigations through one or more field. A sample specification,
generated by our technique, is shown in Figure 3. Most oper-
ators have a direct intuitive reading (equality and inequalities,
boolean connectives, etc.); all and some are the universal
and existential quantifiers, respectively; the dot operator (.)
is relational composition and captures navigation; relational
union and intersection are denoted by + and &, respectively,
and can be applied to combine fields in navigations; set/rela-
tional cardinality is denoted by #; finally, * and ˆ are reflexive-
transitive closure and transitive closure, respectively. Closures
allow the language to express reachability. For instance, the
last sentence in Figure 3 expresses that for every node n
reachable (in zero or more steps) from the root by traversing
left and right (i.e., all nodes in the tree), it is not the case
that n is included in the set of nodes reachable in one or more
steps from n itself. That is, the left + right structure from
the root is acyclic. It is worth to mention that all assertions in
this language can be checked at run-time, and thus we can use
it to assert properties in program points. We refer the reader
to [14] for further details regarding the language.

B. Quality of Assertions

As described above, program assertions are a way of
capturing the expected software behavior via expressions that
convey intended properties of program states in specific parts
of a program. Such expected behavior can be captured with
different degrees of precision, leading to assertions of different
quality. The most typical issue with program assertions is the
misclassification of invalid program states as valid. This is
essentially the effect of having weak assertions, that are able to
detect some, but not all, faulty situations. It is rarely considered
a defect in the assertion, but an inherent issue associated with a
balance between expressiveness and economy/efficiency in the
definition of assertions. Indeed, it is even considered method-
ologically correct to express weak (and efficiently checkable)
assertions [22]. Following the terminology put forward in [15],
a real program execution leading to an invalid program state
that a corresponding assertion is unable to detect is called a
false negative.

A second issue with program assertions is the dual of the
previous, i.e., the misclassification of valid program states as
invalid. This issue indicates that the assertion is wrong, as it
does not properly specify the intended behavior of the soft-
ware. Such issues are typically considered to be specification
defects. This situation can also often arise as a consequence
of software evolution, when required changes in program
behavior are (correctly) implemented, but the accompanying
assertions are not kept in synchrony with the evolved behavior
[6]. A real program execution leading to a valid program
state, that a corresponding assertion classifies as an assertion
violation, is a false positive, according to the terminology put
forward in [15].

Assessing the quality of assertions accompanying a program
is a very challenging problem, that is typically performed



manually. A way of measuring the quality of assertions is
by attempting to determine the number of false positives
and false negatives that a given assertion has. This idea has
been exploited in [15], where an automated mechanism for
evaluating the quality of assertions, based on evolutionary
computation, is proposed. The approach presented therein
executes an evolutionary test generation tool (the well-known
tool EvoSuite [10]) that tries to find false positives and false
negatives, and when found, produces witnessing test cases,
that can be used to (manually) improve the corresponding
assertions. It is worth remarking that, for contracts specified
in standard assertion languages, it is hardly expected for
a contract to fully capture the behavior of a program. As
explained in [27], precisely capturing a program’s intended
semantics requires additional mechanisms, such as the use of
model classes, that imply the manual definition of abstractions
of the state space of the program being specified. In terms
of the above-mentioned issues with program assertions, it
means that, technically, one can very often come up with false
negatives, i.e., finding states that satisfy a given assertion but
correspond to incorrect program behavior.

III. AN ILLUSTRATING EXAMPLE

As an illustrating example, let us consider a Java class
implementing lists, partially shown in Figure 11. This class
implements list operations over balanced trees, supporting
insertion and deletion from the list in O(log n), as opposed to
the classic array-based and linked-list based list implementa-
tions. Let us focus on method add, that inserts an element
in the list. Notice how the precondition of the method is
captured in the source code, checking the validity of the index
for insertion and that the tree has not reached its maximum
size. The method postcondition, on the other hand, is not
present in this implementation. Having the postcondition has
multiple applications, in particular as assertions for testing
future improvements of this method, and as a declarative
description of what this method does (how it operates on the
data structure), among many others. Writing the specification
is, however, nontrivial, and thus coming up with the right
expression for the postcondition is an important problem.

A well-known tool to assist the developer in this situation
is Daikon [7]. Daikon performs run-time invariant detection,
it runs the program on a set of test cases, and observes
which properties hold during these runs at particular program
points, such as after method invokations. It then suggests as
likely invariants those properties that were not falsified by
any execution, or equivalently, that held true for all observed
executions. The quality of the obtained invariants strongly
depends on the program executions considered by Daikon (i.e.,
the set of tests that the user provides), and the set of candidate
expressions to be considered. In particular for method add
in Figure 1, Daikon produces the postcondition shown in
Figure 2, when fed with all valid tree lists of size up to 4.
The shown postcondition is actually that produced by Daikon,

1This implementation is taken from https://www.nayuki.io/page/avl-tree-list

import java.util.AbstractList;

public final class AvlTreeList<E> extends AbstractList<E> {

private Node<E> root;

public void add(int index, E val) {
if (index < 0 || index > size())

throw new IndexOutOfBoundsException();
if (size() == Integer.MAX_VALUE)

throw new IllegalStateException("Max size reached");
root = root.insertAt(index, val);

}

private static final class Node<E> {

private E value;
private int height;
private int size;
private Node<E> left;
private Node<E> right;

public Node<E> insertAt(int index, E obj) {
assert 0 <= index && index <= size;
if (this == EMPTY_LEAF)

return new Node<>(obj);
int leftSize = left.size;
if (index <= leftSize)

left = left.insertAt(index, obj);
else

right = right.insertAt(index-leftSize-1, obj);
recalculate();
return balance();

}

}

}

Fig. 1. Add method of class AvlTreeList

but manually filtering out invalid expressions (inducing false
positives) that could not be falsified by the suite. Still, as it can
be seen, the postcondition generated in this case is relatively
weak: we would expect to have some further information about
how node attributes get manipulated in this implementation
of lists over trees. The reason why Daikon produces this
very simple postcondition in this case has to do with the
set of candidate expressions that Daikon considers, which are
produced from the definition of the program, and are restricted
to relatively simple program properties (e.g., structural con-
straints, membership checking, etc., are not considered) [7].

Our aim is to provide stronger postconditions in cases such
as the above. Our approach is, in essence, similar to Daikon’s:
the method under analysis is run for different inputs, and
from information extracted from these runs we propose a
postcondition for the method. There are, however, multiple
differences. Firstly, our approach is based on generating runs
for the method under analysis bounded exhaustively, as op-
posed to Daikon, which requires tests to be provided (in the
above example, the suite we provided Daikon with was the one
that our technique produces). Our technique for generating the
bounded exhaustive test suite is based on exercising the API
of the inputs of the program under analysis, contrary to related
approaches that require a specification [4], [17]. Secondly, we
consider both valid and invalid program states (although, as



// height
this.root.height >= old_this.root.height &&
this.root.height >= old_this.root.left.height &&
this.root.height >= old_this.root.right.height &&
// size
this.root.size > old_this.root.height &&
this.root.size > old_this.root.left.height &&
this.root.size > old_this.root.right.height &&
// left height
this.root.left.height <= old_this.root.height &&
this.root.left.height >= old_this.root.left.height &&
this.root.left.height >= old_this.root.right.height &&
// right height
this.root.right.height <= old_this.root.height &&
this.root.right.height >= old_this.root.left.height &&
this.root.right.height >= old_this.root.right.height

Fig. 2. Postcondition generated by Daikon for AvlTreeList.add(int, E)

// root
this.root != null &&
this.root.left != null &&
// height
all n : this.root.*(left+right) : (

n.left != null => n.height > n.left.height &&
n.right != null => n.height > n.right.height

) &&
// size
old_this.root.size < this.root.size &&
this.root.size == #(this.root.*(left+right - null)) - 1 &&
all n : this.root.*(left+right) : (

n.left != null => n.size > n.left.size &&
n.right != null => n.size > n.right.size

) &&
// arguments
index != this.root.size &&
val in this.root.*(left+right).value &&
// structural
all n : this.root.*(left+right) : n !in n.^(left + right)

Fig. 3. Postcondition generated by our tool for AvlTreeList.add(int, E)

we explain later on, the approach to generate invalid states may
unsoundly generate valid ones) in attempting to determine a
method’s postcondition, instead of only valid executions, as is
the case with Daikon. Third, our approach is based on evolving
specifications, instead of considering non-falsified candidate
properties. The details of our technique are described in the
next section. Let us just mention that, for method add of class
AvlTreeList, our obtained postcondition is the one shown
in Figure 3. Notice how the size update (referring to the
relation between the pre and post states) and the membership
of the inserted element are captured, as well as some structural
properties of the representation.

IV. EVOSPEX

We now present the details of our technique for inferring
method postconditions. An overview is shown in Fig. 4. The
technique is composed of two main phases: state generation
and learning. During state generation, we produce pre/post
program state pairs which are later on used in the learning
phase to guide the search for suitable postcondition assertions.
Two kinds of state pairs are generated: valid ones, which
capture actual method behaviors that candidate assertions
should satisfy; and invalid ones, which attempt to capture

incorrect behaviors (pre/post pairs that do not correspond to
the current method behavior), that candidate assertions should
not satisfy. Valid pre/post pairs are generated by executing
the target method, using a test generation technique; clearly,
these pairs correspond to the behavior of the method, as they
were generated from its execution. Invalid pre/post pairs, on
the other hand, are generated by mutating valid pairs, going
out of the set of valid pairs; contrary to the case of valid
pairs, it is not guaranteed that our invalid pairs are indeed
incorrect method behaviors, i.e., that they represent behaviors
that are not exhibited by the method. This may clearly affect
the precision of the obtained assertions, since the algorithm
would be guided to avoid some allegedly invalid behaviors
which are actually valid. In these situations, the obtained
assertions would be stronger than necessary, leading to a
higher number of false positives, when evaluating assertion
quality. We consider this issue in the design of our technique,
in the following way. Firstly, the effectiveness in generating
truly invalid pairs depends on the exhaustiveness of the set
of valid pairs: the more exhaustive the set of valid pairs, the
greater the chances that mutating out of this set leads to a
truly incorrect method behavior. Secondly, as the soundness
of the mechanism for invalid state pair generation cannot be
guaranteed, one may risk favoring incorrect assertions based
on wrong invalid state assumptions. The former motivates
the use of a bounded-exhaustive test generation approach for
valid state pairs. The latter drives an asymmetric treatment
of valid and invalid state pairs in the fitness function, that
gives the reliable information provided by valid pairs a greater
relevance. We further describe in this section how we handle
these issues, as well as other details of the genetic algorithm,
and in the next section we evaluate the technique, including
an evaluation of assertion precision.

A. Generation of Valid/Invalid Method Executions

The learning phase of our algorithm depends on a set of
valid/invalid method executions, which guide the search for
postcondition assertions. This is an important part of our
algorithm. The overall process starts by generating runs of
the target method m, collecting the pre/post states 〈s, s′〉 of
each execution; these are the valid execution pairs V . In order
to generate invalid execution pairs I , valid pairs are mutated:
for a valid pair 〈s, s′〉, we mutate s′ into s′′, and check that
〈s, s′′〉 does not belong to V , to consider it part of I . Of
course, the mutated pre/post pair may actually correspond to
a valid execution of m that we had not generated in V . The
effectiveness of this latter approach depends on how thorough
V is (although we may still generate “unseen” valid execution
pairs via mutation), motivating a bounded exhaustive approach
for generating valid execution pairs.

The mechanism for generating valid execution pairs works
as follows. Let C,C1, . . . , Cn be classes, and m, the target
method, a method in C with parameters of types C1, . . . , Cn.
The initial states for the execution of m will be tuples
〈oC , oC1 , . . . , oCn〉 of objects of types C,C1, . . . , Cn, respec-
tively. We build the objects to form these tuples, for each class,
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bounded exhaustively, in the following way. Let Ci be a class,
and methods b1, . . . , bl a set of builders for Ci, i.e., a set of
manually identified methods that can be used to create objects
of class Ci. For instance, for a set collection, builders would
include constructors and insertion routines. Given a bound k
(maximum length for method sequences), we build a set of
objects of class Ci using a variant of Randoop [26]. Randoop
randomly generates sequences of methods of Ci’s API, of
increasing length, by iterating a process in which previously
produced traces are randomly selected, together with a method,
to generate a new trace that calls this method. Our variant
incorporates two main modifications to this process:

• The random selection of a method to extend a previously
produced trace t (test case), implemented in [26], is
replaced by a mechanism to systematically select all
methods in b1, . . . , bl, leading to l different extensions
of t. This is applied until the bound k is reached.

• A state matching mechanism is implemented, to reduce
the number of method combinations: when a newly pro-
duced trace leads to an object that matches a previously
collected one, the trace (and the object) are discarded.
The state matching approach borrows the canonical object
representation put forward in [29].

Besides the bound k on trace length, the state matching
mechanism also requires a maximum number of objects per
type, and a range for primitive types (e.g., 0..k-1 for integers).
This is a k-based scope, as defined in finitization procedures in
[4] (a standard issue in bounded exhaustive generation). Using
the above mechanism, we build the tuples of initial states, to
execute m. We execute m in each of these tuples, and collect
the corresponding post-states, building in this way the set V
of valid pre states and corresponding post states for m.

The mutations applied to produce the “invalid” pre/post
state set I , take a valid execution pair 〈s, s′〉, and create
〈s, s′′〉, where s′′ mutates s′ by selecting a random field in
the receiving object or return value (the constituents of s′),
and replacing the value by a randomly generated value of
the corresponding type within the above mentioned scope. We
check that the resulting pair is not in V before including it
into the invalid state pair set I .

B. Chromosomes representing Candidate Postconditions

Our representation of candidate assertions is based on the
encoding used in [24], where chromosomes represent conjunc-
tions of assertions (each gene in a chromosome represents
an assertion). That is, given a chromosome c, the candidate
postcondition ϕc represented by c is defined as follows:

c = 〈g1, g2, . . . , gn〉 ⇒ ϕc = g1 ∧ g2 ∧ ... ∧ gn

As opposed to what is most common in genetic algorithms,
chromosomes have varying lengths in this representation (up
to a maximum chromosome length), and gene positions are
disregarded by the genetic operators (see below), due to the
associativity and commutativity of the conjunction. Genes
need to encode complex assertions. Below we describe how
genes are built, mutated and combined.

C. Initial Population

Let us describe how we build the initial population, to start
our genetic algorithm. In order to create individuals repre-
senting “meaningful” postconditions, i.e., assertions stating
properties of objects that are reachable at the end of the
method executions, we take into account typing information,
as in [24]. We consider a type graph built automatically
from the class under analysis: nodes represent types, and
each field f of type B in class A will produce an arc in
the graph going from the node representing A to the node
representing B. For example, if we consider the AvlTreeList
class in Figure 1, the corresponding type graph would be
the one shown in Figure 5. It is straightforward to see
that by traversing the graph, typed expressions can be built,
using the fields of the object from which the method was
executed. Some examples are this.root, this.root.left,
this.root.size, this.root.value, and so on. Moreover,
from loops in the graph, expressions denoting sets, such
as this.root.*left (the set of nodes reachable from
this.root via left traversals only), this.root.*right
and this.root.*(left+right), can be created (as ex-
plained earlier, we are using * for reflexive-transitive closure,
as in [14]). Size one chromosomes are created using expres-
sions denoting a single value, evaluating these on a randomly
selected subset of the valid (resp. invalid) method executions,
in the following way: if the result of evaluating an expression
expr in a valid (resp. invalid) tuple t returns a value v, then
we create the individual 〈expr == v〉 (resp. 〈expr != v〉).

In addition to these basic individuals we also create chromo-
somes containing comparisons of random expressions of the
same type (e.g., this.root == this.root.right), chro-
mosomes with quantified formulas considering expressions
denoting sets (e.g., all n: this.root.*(left+right) -
null : n == n.right), and individuals comparing integer
expressions with the cardinality of expressions denoting sets
(e.g., this.root.height == #(this.root.*right)). Fi-
nally, since the method under analysis may have a return value
or a set of arguments, we also include, in the set of initial
candidates, expressions comparing them against expressions
of the same type (e.g., result < this.f). The expressions
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used to compare with the result variable or the arguments, as
well as the operators, are randomly chosen.

Notice that all our initial chromosomes are size 1 chromo-
somes. The main reason for this design choice is to allow the
genetic algorithm to progressively produce complex candidate
postconditions by means of the genetic operators, that we de-
fine later on in this section. While this size-one chromosomes
for the initial population is non-standard in genetic algorithms,
in our case it helps the algorithm to more quickly converge
to better fitted individuals. The replication package site [1]
contains the results of comparing the effectiveness of our size-
one chromosomes in the initial population, with standard size-
N chromosomes (we do not include the comparison here due
to space restrictions).

D. Fitness Function

Our fitness function assesses how good a candidate post-
condition is, by distinguishing between the set V of valid
executions and the set I of invalid executions. To do so,
before computing the fitness value of a given candidate c, we
obtain the postcondition ϕc that c represents, and then compute
the sets P and N of positive and negative counterexamples,
respectively. These sets are defined as follows:

P = {v ∈ V |¬ϕc(v)} N = {i ∈ I|ϕc(v)}

where ϕc is the postcondition represented by the candidate c.
Basically, the sets P and N contain those executions for which
the postcondition ϕc does not behave correctly. Recall that,
as opposed to the case of V which reliably represents actual
execution information of m, the set I may contain mutated
executions that are considered “invalid”, but correspond to
actual executions of m. This motivates a definition of our
fitness function that does not treat P and N symmetrically.
The fitness function f(c) is computed as follows:#P > 0→ (MAX−#P −#I) +

(
1

lc+compc

)
+ mcac

lc

#P = 0→ (MAX−#N) +
(

1
lc+compc

)
+ mcac

lc

This case-based definition aims at considering the negative
counterexamples only when no positive counterexamples are
obtained. In fact, for arbitrary candidates c1 and c2, if c1
has no positive counterexample and c2 has some positive
counterexamples, then f is guaranteed to produce worse fitness
values for c2, no matter how many negative counterexamples

these candidates have. The rationale here is to make the
reliable positive-counterexample information more relevant.

The definition of the fitness function has three parts. The
first term reflects the most important aspect: to minimize the
number of counterexamples. The fact that when the candidate
postcondition ϕc has positive counterexamples, i.e., it is falsi-
fied by a correct method execution, the whole set I of invalid
executions is considered as counterexamples too, is what guar-
antees our above observation regarding the prioritization of
candidates with no positive counterexamples. More precisely,
the first term of the function subtracts #I when #P > 0, to
ensure that the fitness value of such individual is lower that
the fitness value of any other individual that only has negative
counterexamples. The second term of the fitness function
acts as a penalty regarding two aspects: the candidate length
lc and the candidate “complexity” compc. The candidate
length is simply the number of conjuncts in the assertion,
and it is considered in order to guide the algorithm towards
producing smaller assertions. The candidate complexity is the
sum of each conjunct complexity. Intuitively, the complexity
of an equality between two integer fields is lower than the
complexity of an equality between an integer field with a set
cardinality, and both of these are lower than the complexity of
a quantified formula, and so on. The last term of the function
acts as a reward favoring those candidates with a greater
number of “method component assertions” mcac, i.e., with a
high number of conjuncts of the candidate postcondition that
represent properties regarding the parameters, the result, or a
relation between initial and final object states. As described,
the penalty related to the candidate length and complexity
as well as the reward prioritizing the method component
assertions just contribute a fraction to the fitness value, since
we want the algorithm to focus on individuals whose number
of counterexamples is approaching zero.

E. Genetic Operators

During evolution, the genetic operators allow the algorithm
to explore the search space of candidate solutions, by per-
forming certain operations that produce individuals with new
characteristics as well as combinations of existing ones. In
particular, our algorithm implements two well known genetic
operators, namely the mutation and crossover operators. Some
of these genetic operators were inspired by similar ones
introduced in [24], while others are novel. Also, a custom
selection operator was implemented, to keep in the population
those candidates that are more suitable to be part of the real
post condition.

Each chromosome gene is selected for mutation with a
probability of 0.3, and the operation can perform a variety
of modifications depending on the shape of the selected gene
expression. From a general point of view, the set of considered
mutations are the following:

Gene deletion: it can be applied to any gene and simply
removes the gene expression from the chromosome.

Negation: it negates the gene expression and is applied to
any gene except quantified assertions.



Numeric addition/subtraction: it is only applied to genes
that compare two expressions evaluating to a number, and it
adds/subtracts a randomly selected numeric expression to the
right-hand side of the comparison.

Expression replacement: it applies to any gene, and it
replaces some part of the gene with a randomly selected
expression of the same type.

Expression extension: it can be applied to any gene that
involves a navigational expression, and it extends this expres-
sion with a new field, for example replacing this.root by
this.root.left.

Operator replacement: it replaces an operator by an alter-
native one. The operators vary depending on the current gene
expression. For instance, for relational equalities, the possi-
ble operators are {==, ! =}; for numeric comparisons, the
operators are {==, ! =, <,>,<=, >=}; and for quantified
expressions, the quantifiers are {all, some}.

To produce combinations of individuals, we use a crossover
rate of 0.35. Given two randomly selected chromosomes
c1 and c2, our crossover operator simply produces a new
individual that contains the union of the genes of c1 and c2,
and thus represents the candidate postcondition ϕc1 ∧ ϕc2.
An important detail in our crossover operator is that before
selecting individuals for combination, we filter the population,
keeping individuals which only have negative counterexam-
ples, i.e., that represent formulas that are consistent with all
valid method executions. The main reason for this policy is that
we want the algorithm to join chromosomes that are already
consistent with the valid method executions.

Finally, to keep in the population the best candidates of each
generation, our selection operator is defined as follows: given a
number n to be used as constant population size, our operator
first sorts all the candidate postconditions in decreasing order,
and then the candidates to be moved to the next generation
are the first n/2 individuals plus the best n/2 unary non-valid
individuals, i.e., size 1 chromosomes whose only gene is a
formula that still has positive counterexamples. Additionally,
our operator keeps all the unary valid candidates, that is, those
that only have negative counterexamples. This last policy in
our selection operator allows us to keep in the population all
the discovered valid properties that the algorithm can use in
future crossover operations.

V. EVALUATION

To evaluate our technique, we performed experiments fo-
cused on the following research questions:

RQ1 Do the oracles learned by EvoSpex have any deficiency
compared to oracles produced by related tools?

RQ2 Are the assertions produced by the algorithm close to
manually written contracts?

To evaluate RQ1, we need to consider programs (in our
case, Java programs) for which to infer method specifications.
As mentioned earlier in the paper, and as it is clear from our
candidate assertion state space and evolution operators, we

target classes and methods with reference-based implementa-
tions, in particular classes where the corresponding internal
representation has strong (implicit) invariants. As a source
for our benchmark, we considered SF1102 (originally used in
[11]), a collection of 110 Java projects (100 random projects,
plus the 10 most popular ones according to SourceForge),
that covers a wide variety of software, representative of open
source development. Our process of assessing postcondition
assertions makes use of the OASIs tool [15], essentially, to
evaluate the quality of a postcondition assertion in terms of its
associated number of false positives and false negatives. The
process of computing this number requires a manual process
(as described in [15], to compute the false negatives one first
needs to get rid of the false positives, which implies having
to manually refine the produced postconditions every time
OASIs reports the presence of a false positive). Therefore,
we are unable to consider the whole 110 projects in the
benchmark. We randomly selected 16 projects, skipping cases
in our selection that have a clear dependency on the environ-
ment (our technique involves automated test generation, and
environment dependencies seriously affect these tools). The
16 projects can be found in Table II. For each case study, we
selected various methods with different behaviors for analysis,
manually defined a set of builders, and then generated the
corresponding valid and invalid method executions with a
relatively small scope (3 for all cases). Then, we executed
our tool in the following way: for each method m selected
for analysis, we executed the genetic algorithm to produce
a postcondition for m until it reached 30 generations or a
10 minutes timeout was fulfilled. We repeated this execution
10 times, and then selected the postcondition assertion that
repeated the most number of times, from the 10 produced by
the algorithm. Additionally, in order to compare our tool with
related approaches, we executed Daikon to infer post condi-
tions for each method m. It is important to remark that the
test suites that we fed Daikon with to produce postconditions
for the methods under analysis, were exactly the same test
suites that were used to generate the valid method executions
in our technique (our valid bounded exhaustive suites). Both
our tool and Daikon can produce assertions leading to false
positives (see Section 2 for a comment on this issue), as well
as redundant assertions.

The results of this experiment are shown in Tables I and
II. Table I presents the postconditions generated by the tools,
after removing the false positives and the redundant assertions,
with the aim of giving a clear glance of the complexity of
the assertions that the techniques are able to generate. We
considered these assertions, as the ones produced by the two
techniques. We then measured the quality of the corresponding
assertions by automatically computing false positives and false
negatives, using the OASIs [15] tool. Table II shows the
results of this quality assessment. Specifically, for each case
study, we report in Table II: (i) lines of code (LoC) of the
evaluated project; (ii) number of analyzed methods from the

2https://www.evosuite.org/experimental-data/sf110/



TABLE I
POSTCONDITIONS INFERRED BY EVOSPEX AND DAIKON AFTER REMOVING FALSE POSITIVES

Method EvoSpex Daikon
jiprof - com.mentorgen.tools.profile.runtime.ClassAllocation

getAllocCount(): int result == this._count this._count == result && result == old(this._count)

incAllocCount(): void this._count == 1 + old(this_count) this._count >= 1 && this._count - old(this_count)- 1 == 0

jmca - com.soops.CEN4010.JMCA.JParser.SimpleNode
jjtSetParent(Node n): void n == this.parent this.parent == old(n)&&

this.children == old(this.children)&&

this.id == old(this.id)&&

this.parser == old(this.parser)&&

this.identifiers == old(this.identifiers)

bpmail - ch.bluepenguin.email.client.service.impl.EmailFacadeState
setState(Integer ID, boolean

dirtyFlag): void

ID in this.states.keySet() this.states == old(this.states)

byuic - com.yahoo.platform.yui.compressor.JavaScriptIdentifier
preventMunging(): void this.mungedValue == old(this.mungedValue)&&

this.refCount == old(this.refcount)&&

all n : this.declaredScope.*parentScope: n !in n.^parentScope

this.mungedValue == old(this.mungedValue)&&

this.recCount == old(this.refcount)&&

this.declaredScope == old(this.declaredScope)&&

this.markedForMunging == false

dom4j - org.dom4j.tree.LazyList
add(E element): boolean old(this.size)== this.size - 1 &&

result == true &&

element in this.header.*next.element

this.header == old(this.header)&&

this.size >= 1 &&

result == true &&

this.size - old(this.size)- 1 == 0

corresponding project; (iii) number of assertions produced as
part of the postconditions; (iv) amount and percentage of
false positives present in all generated assertions; and (v)
number of methods for which false negatives were detected.
Notice that, as proposed in [15], false negatives detection is
performed once all the false positives have been removed from
the postcondition (hence the manual task that made us consider
a subset of SF110). For both false positives detection and false
negatives detection, we executed OASIs with a timeout of one
minute. Problems with OASIs prevented us from reporting
the number of false negatives for each method and case
study; more precisely, when the tool reported the existence
of false negatives, in some cases it was unable to produce the
witnessing counterexamples (test cases), preventing us from
measuring the number of false negatives identified by the tool
in these cases. This issue was discussed with the developers of
the tool. We therefore inform the number of methods for which
OASIs reported the existence of false negatives, rather than the
number of false negatives found, as this information was not
reliably produced by the tool for all cases. For instance, for
project imsmart, out of the 3 methods analyzed, OASIs found
one of the corresponding assertions discovered by Daikon to
have false negatives, and one of the assertions discovered by
EvoSpex to have a false negative, too.

The evaluation of RQ2 requires having classes with methods
featuring manually written contracts. Moreover, as discussed
in Section 2, assertions for run-time checking are typically
weak, efficiently checkable assertions, that weakly capture the
semantics of the corresponding classes and methods [22], [27].
In order to compare with strong contracts, we took:

• A set of case studies with contracts written for the verifi-
cation of object oriented programs. More precisely, these
programs are written in Eiffel [23], and the accompanying
contracts were used for verification using the AutoProof
tool [37], a verifier for object-oriented programs written
in the Eiffel programming language, for Eiffel programs.

• A set of case studies for which a data representation and

method implementations are automatically synthesized
from a higher-level specification. More precisely, the
synthesized implementations are taken from [19], are
generated by the Cozy tool, and are guaranteed to be
correct with respect to higher level specifications, which
serve as method contracts.

From [37], we specifically considered various methods and
their corresponding postconditions, from the following cases:
• Composite: A tree with a consistency constraint between

parent and children nodes. Each node stores a collection
of its children and a reference to its parent; the client is
allowed to modify any intermediate node. A value in each
node should be the maximum of all children’s values.

• DoublyLinkedListNode: Node in a (circular) doubly-
linked list with a structural invariant enforcing that its
left and right links are consistent with its neighbors.

• Map<K,V>: Generic Map abstract datatype implemen-
tation, based on two lists that contain the keys and values,
and with operations that perform linear searches on the
lists.

• RingBugger<G>: Bounded queue implemented over a
circular array.

Since our tool is for Java, and these implementations are in
Eiffel, we had to manually translate the whole classes into
Java, for analysis with our tool (this also prevented us from
considering more sophisticated case studies in this evaluation).
While the translation was manual, we made an effort in making
it systematic, preserving the structure of the original code,
and taking into account the semantics of references (e.g.,
expanded types in Eiffel), array indexing in Eiffel vs. Java,
etc., using as a guideline the J2Eif work [36]. Eiffel also
differs from Java in other important aspects that did not affect
the translation (e.g., inheritance, visibility of features, etc.).
While we did not formally verify our translation, it was code-
reviewed independently by co-authors of the paper.

From [19], we considered several high-level specifications
and their corresponding synthesized Java implementations:



• Polyupdate, a bag of elements that keeps track of the
sum of its positive elements.

• Structure, a simple class encapsulating a function and
caching a parameter.

• ListComp02, a structure composed of two collections of
different elements, and operations that combine elements
of the collections.

• MinFinder, a bag of elements with a min operation.
• MaxBag, a set of elements, with a max operation.
In order to infer postconditions for methods in these classes,

we first generated valid and invalid method executions, as
described earlier in this paper, for each of the target methods
using a scope of 4. Then, we executed our algorithm using the
same configuration described for RQ1 (30 generations with
a 10-minute timeout). Again, we repeated the execution 10
times and selected the most frequently obtained postcondition.
Notice that our approach is not using the real contracts already
accompanying the target methods. We fully ignore these in
the inference approach, and only consider the methods source
code, both for the generation of valid/invalid method execu-
tions, and for the actual evolutionary inference. A similar pro-
cedure was followed for the Cozy case studies. We computed
postconditions for the Java implementations, and contrasted
them with those in the original high-level specifications, from
which the Java implementations were derived.

The results of this experiment are shown in Tables III and
IV. In Table III, for each of the target methods, the column
Eiffel Contracts lists the properties that are present in the
original postcondition (expressed as text, for easier reference).
In Table IV, the original postcondition is described in column
High-level spec in terms of the abstract state declared in the
specification. In both tables, the column EvoSpex indicates
which of the corresponding assertions in the original contract,
our evolutionary algorithm was able to infer. Finally, Table V
summarizes these results and also reports the number of invalid
assertions synthesized as part of the inferred specifications for
each subject in Eiffel and Cozy case studies.

Our tool, all the case studies, and a description of how to
reproduce the experiments presented in this section can be
found in the site of the replication package of our approach
[1]. All the experiments were run on an Intel Core i7 3.2Ghz,
with 16Gb of RAM, running GNU/Linux (Ubuntu 16.04).

A. Assessment

Let us briefly discuss the results of our evaluation. Re-
garding RQ1, the results show that our approach is able to
generate postconditions containing more complex assertions
than the ones produced by Daikon. This is mainly due to
the fact that our technique focuses on evolving assertions
targeting reference-based conditions in reference-based im-
plementations, as opposed to Daikon whose expressions are
comparatively simpler properties, that do not include complex
structural constraints, membership checking, etc (with the
exception of arrays and implementations of java.util.List,
for which Daikon generates interesting structural properties).
Furthermore, as Table II shows, a significant number of the

TABLE II
MEASURING THE QUALITY OF POSTCONDITIONS INFERRED BY DAIKON

AND EVOSPEX, USING OASIS.

Project LOCs Methods Technique #Assertions FPs FNs
Total %

imsmart 1407 3 Daikon 21 2 9.52 1
EvoSpex 4 1 25 1

beanbin 4784 5 Daikon 35 5 14.29 0
EvoSpex 7 0 0 0

byuic 7699 7 Daikon 165 21 12.73 4
EvoSpex 36 4 11.11 2

geo-google 20974 7 Daikon 93 30 32.26 0
EvoSpex 10 3 30 4

templateit 3315 7 Daikon 37 4 10.81 3
EvoSpex 20 0 0 2

water-simulator 9931 9 Daikon 39 3 7.69 9
EvoSpex 18 3 16.67 9

dsachat 5546 9 Daikon 138 15 10.87 3
EvoSpex 18 2 11.11 2

jmca 16891 9 Daikon 205 26 12.68 0
EvoSpex 25 1 4 3

jni-inchi 3100 10 Daikon 122 12 9.84 2
EvoSpex 50 1 2 4

bpmail 2765 11 Daikon 46 6 13.04 8
EvoSpex 17 0 0 7

dom4j 42198 18 Daikon 166 27 16.27 7
EvoSpex 25 2 8 10

jdbacl 28618 19 Daikon 115 17 14.78 10
EvoSpex 80 3 3.75 8

jiprof 26296 20 Daikon 352 81 23.01 20
EvoSpex 35 4 11.43 19

summa 119963 21 Daikon 273 67 24.54 6
EvoSpex 62 5 8.06 5

corina 78144 22 Daikon 155 13 8.39 17
EvoSpex 55 1 1.82 17

a4j 6618 23 Daikon 257 59 22.96 9
EvoSpex 60 5 8.33 5

TOTAL 200 Daikon 2219 388 17.49 99
EvoSpex 522 35 6.70 98

assertions inferred by our technique are true positives, i.e.,
assertions that hold for all valid post-states of the correspond-
ing methods, for any scope. Of course, this check for true
positives is in the end manual (we carefully analyzed how
each of the evaluated methods operates, and inspected the
obtained assertions after filtering out assertion conjuncts as per
OASIs assessment); the oracle deficiency analysis performed
by OASIs is inherently incomplete, we cannot guarantee the
truth of the remaining assertions.

As shown in Table II, in most of the case studies (13 out of
16), the percentage of false positives that our tool generates,
when considering the total amount of produced assertions, is
less than that produced by Daikon. Thus, comparing it with
Daikon, and solely based on false positives, our assertions
are significantly more precise. In fact, in a total of 200
methods analyzed, our technique had a 6.7% false positives,
compared to the 17.49% of Daikon (an order of magnitude
improvement). Moreover, the relationship between the number
of produced assertions (in total, 522 of EvoSpex vs. the 2219
produced by Daikon) and the identified presence of false



TABLE III
COMPARING MANUALLY WRITTEN CONTRACTS (IN EIFFEL VERIFIED

CLASSES) WITH POSTCONDITIONS INFERRED BY EVOSPEX.

Method Eiffel Contracts EvoSpex
Composite

add_child(Composite c) : void child added 3

c value unchanged
c children unchanged
ancestors unchanged 3

DoublyLinkedListNode
insert_right(DoublyLinkedListNode n) : void n left set 3

n right set
remove() : void singleton 3

neighbors connected
Map<K,V>

count() : int result is size 3

extend(K k,V v) : int key set 3

data set 3

other keys unchanged
other data unchanged
result is index

remove(K k) : int key removed 3

other keys unchanged
other data unchanged
result is index

RingBuffer<G>

count() : int result is size
extend(G a_value) value added 3

item() : G result is first elem
remove() : void first removed
wipe_out() : void is empty 3

TABLE IV
INFERRING POSTCONDITIONS OF SYNTHESIZED COLLECTIONS.

High-level state Method High-level spec EvoSpex
Polyupdate

x : Bag<Int> a(Integer y) : void y added to x 3

s : Int y added to s if positive
sm() : Integer result is s + sum of x 3

Structure
x : Int foo() : Integer result is x + 1 3

setX(Integer y) x = y 3

ListComp02
Rs : Bag<R> insert_r(R r) : void r added to Rs 3

Ss : Bag<S> insert_s(S s) : void s added to Ss 3

q() : Integer result is the sum of Rs ⊗ Ss
MinFinder

xs : Bag<T> findmin() : T result is min of xs 3

chval(T x, int nv) : void inner value of T is x
MaxBag

l : Set<Int> get_max() : Integer result is max of l 3

add(Integer x) : void x added to l 3

remove(Integer x) : void x removed from l

negatives, shows that our technique produces overall assertions
of similar strength, with significantly fewer constraints. Daikon
seems to make a more heavy used of specifically observed
values in the assertions, leading to assertions that, while
true within the provided test suite cases, are violated when
considering larger scopes. Our algorithm is guided both by
valid and invalid pre/post method states, giving it an advantage
over Daikon, and explore a state space of candidate assertions
that are less affected by specific values observed in executions.

TABLE V
SUMMARY OF EVOSPEX ASSERTIONS ON RQ2 SUBJECTS

Subject Methods Manual Contracts Inferred Assertions
Total Invalid

Eiffel
Composite 1 4 7 0
DoublyLinkedListNode 2 4 5 0
Map<K,V> 3 10 10 0
RingBuffer<G> 5 5 30 4

Cozy
Polyupdate 2 3 3 0
Structure 2 2 2 0
ListComp02 3 3 6 0
MinFinder 2 2 3 0
MaxBag 3 3 33 5

Regarding false negatives, both Daikon and our technique lead
to assertions for which OASIs is able to identify false negatives
(with our technique having a small margin of advantage in
this respect). The conclusion is clear: the assertions obtained
with both tools are weaker than the “strongest” postcondition,
thus letting “pass” undetected some mutations of the analyzed
methods (cf. how OASIs identifies false negatives [15]). Un-
fortunately, as discussed earlier, a problem with OASIs did not
allow us to perform a more detailed comparison, based on the
number of identified false negatives in each case. Nevertheless,
by inspecting the obtained postconditions, as shown in Table I,
it is apparent that our technique produces stronger assertions.

Regarding RQ2, the assertions that our technique can pro-
duce are close to those that may be defined by developers
when manually specifying rich contracts. As Table III shows,
our algorithm generated at least one of the exact properties
defined in the original assertions for the Eiffel methods in 8
out of 11 cases. Similarly, as Table IV indicates, in 9 out
of 12 methods we correctly identified at least one property
of the corresponding postcondition. This confirms that our
technique is capable of generating assertions that are actually
true positives and are scope-independent. In the case of the
remaining properties that the algorithm was not able to infer,
these are specific assertions regarding the arguments, complex
properties over sets that are beyond the assertions that the
algorithm may produce, such as the “other keys unchanged”
in the Map.extend routine, or are relatively complex arithmetic
constraints such as the ones present in Cozy’s ListComp02
and the RingBuffer methods (notice that our assertions con-
centrate on properties of reference-based fields rather than
sophisticated arithmetic assertions). Regarding the precision of
the generated specifications for Eiffel and Cozy case studies,
it is also important to analyze if the tool produces invalid
assertions. As Table V shows, only 2 out of 9 subjects
contained invalid assertions in the corresponding inferred
postcondition, being all of them assertions that are true in
the bounded scenarios from which they were computed, but
are not if the scope is extended. These cases were the ones
that involved a greater number of fields. Still the percentage
of invalid postconditions for these cases were about 15% or



less (4 of 30 in one case, 5 of 33 in the other). Table V also
shows that, for most case studies, EvoSpex produces additional
valid assertions, compared to the corresponding postcondition.
Generally, these have to do with valid information that is
not explicitly mentioned in the original postcondition. For
instance, for Composite.addChild, EvoSpex produced a 7-
conjunct postcondition, 2 of which are in the manual contract;
the remaining 5 are either trivial (e.g., the list of children
is not changed, the parent is not changed), or capture valid
information not in the original “ensure” (e.g., acyclicity of the
parent structure). For further details, we refer the reader to the
replication package site [1], where all the assertions produced
for each case study can be found.

VI. RELATED WORK

Assertions can be exploited for a wide variety of activities
in software development, notably program verification [5],
[8] and bug finding [35], [18], but also including program
comprehension, software evolution and maintenance [30], and
specification improvement [15], [31], among others. Thus,
the problem of automatically inferring specifications from
source code, and in general the problem of producing soft-
ware oracles, has received increasing attention in the last
few years [3]. Techniques for inferring specifications from
source code, i.e., for deriving oracles, include approaches
based on program executions, such as those reported in [7],
[34], as well as some recent techniques based on machine
learning [32], [33], [25]. Compared to the execution based
approaches, our technique is guided both by valid and invalid
executions (actually, pre/post method states); compared to the
machine learning approaches, our technique concentrates on
method postconditions, and produces interpretable assertion in
standard assertion languages, as opposed to assertions encoded
into artificial neural networks and other machine learning
models. A closely related technique is that proposed in [7],
with which we compare in this paper. Tools for automated
test generation, notably EvoSuite [10] as well as Randoop
[26] and some extensions [38], can produce assertions ac-
companying the generated tests. However, these assertions are
scenario-specific, i.e., they capture properties particular to the
generated tests, as opposed to our postconditions that attempt
to characterize general method behaviors.

Our technique embeds a mechanism for test input genera-
tion, that follows a bounded exhaustive testing approach. As
opposed to the previous mechanisms for generating bounded
exhaustive suites, e.g., via tools like Korat [4] or TestEra [17],
our technique generates bounded exhaustive suites from the
program’s API, rather than from an invariant specification. In
this sense, our technique is more closely related to Randoop
[26], replacing the random method selection in building test
traces, with a systematic generation of all bounded method
traces. The state matching mechanism we used in this paper
is crucial in making this approach effective, but its discussion
is beyond the scope of the paper. Besides producing valid
method executions in the search of assertions, our technique
also produces invalid program executions. The approach is

based on mutating state. It is somehow related to the oracle
assessment approach (for false negatives) implemented in the
OASIs tool [15], although therein the authors mutate programs
(source code), as opposed to mutating state. The idea of
mutating state is used elsewhere, e.g., in [20], [25].

VII. CONCLUSION

The oracle problem has become a very important prob-
lem in software engineering, and within this context, oracle
derivation or inference is particularly challenging [3]. In this
paper, we have proposed an evolutionary algorithm for oracle
inference, in particular for inferring method assertions in
the form of postconditions. Our technique features various
novel characteristics, including a mechanism for generating
test inputs bounded exhaustively, from a component’s API,
and the definition of a genetic algorithm whose state space
of candidate assertions includes rich constraints involving
method parameters, return values, internal object states, and
the relationship between pre and post method execution states.
Our experimental evaluation shows that our tool is able to
produce more accurate assertions (stronger contracts in the
sense of [28], with the associated benefits described therein),
with a total of 6.70% of false positives, compared to the
17.49% of false positives of related techniques, for a set of
randomly selected methods from a benchmark of open source
Java projects. Furthermore, our evaluation shows that our
technique is able to infer an important part of rich program
assertions, taken from a set of case studies involving contracts
for program verification and synthesis.

This work also opens several lines for future work. On
one hand, our genetic algorithm uses a finite set of genetic
operators, in particular the ones used for mutation; extending
the set of operators and exploring new ones may be necessary
to increase the scope of properties that the algorithm may
produce, especially when dealing with more sophisticated
programs. Fitness functions in genetic algoritms play a crucial
role in the quality of the solutions; adapting the fitness function
of our algorithm in order to prioritize general aspects of
method postconditions may considerably improve our results.
Our experiments were based on the use of a variant of
random generation for the production of bounded exhaustive
test suites. Using alternative test suite generation approaches
such as fully random generation may allow us to produce
different postconditions. The existence of false negatives for
our produced postcondition assertions also opens lines of
improvement for our inference mechanism.
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