
SpecFuzzer: A Tool for Inferring Class
Specifications via Grammar-based Fuzzing

Facundo Molina
IMDEA Software Institute

Madrid, Spain
facundo.molina@imdea.org

Marcelo d’Amorim
North Carolina State University

Raleigh, USA
mdamori@ncsu.edu

Nazareno Aguirre
University of Rio Cuarto and CONICET

Rio Cuarto, Argentina
naguirre@dc.exa.unrc.edu.ar

Abstract—In object-oriented design, class specifications are
primarily used to express properties describing the intended
behavior of the class methods and constraints on class’ objects.
Although the presence of these specifications is important for
various software engineering tasks such as test generation, bug
finding and automated debugging, developers rarely write them.

In this tool demo we present the details of SPECFUZZER,
a tool that aims at alleviating the problem of writing class
specifications by using a combination of grammar-based fuzzing,
dynamic invariant detection and mutation analysis to auto-
matically infer specifications for Java classes. Given a class
under analysis, SPECFUZZER uses (i) a generator of candidate
assertions derived from a grammar automatically extracted from
the class; (ii) a dynamic invariant detector –Daikon– in order
to discard the assertions invalidated by a test suite; and (iii)
a mutation-based mechanism to cluster and rank assertions, so
that similar constraints are grouped together and the stronger
assertions are prioritized. The tool is available on GitHub at
https://github.com/facumolina/specfuzzer, and the demo video
can be found on YouTube: https://youtu.be/IfakNCbzOUg.

Index Terms—Oracle Problem, Specification Inference,
Grammar-based Fuzzing.

I. INTRODUCTION

Software specifications are abstract descriptions of the
software’s intended behavior. In object-oriented (OO) design,
where software is organized as a set of classes equipped
with methods, a class specification describes the intended
behavior of a class’ methods and the constraints that the
class’ objects need to satisfy. Class specifications are typically
described informally, through natural language documentation
of class APIs. However, specifications become significantly
more useful when expressed formally, through constraints
known as contracts [8]. Contracts have been widely used
for a variety of tasks, including test generation [1], [2], [6],
automated debugging [7], [12], bug finding [5], [11], and
verification [5]. Although the use of formal contracts has
provided considerable benefits, developers rarely write them.

In this context, different techniques for inferring class
specifications have been proposed [3], [10], [13], with the aim
of providing developers with automated ways of equipping
their implementations with contracts. Often, the expressiveness
of the specification language used by these approaches is
limited. Daikon [3], a mature powerful technique for contract
inference based on dynamic analysis, supports a restricted set
of templates, from which assertions are generated. It is limited

Fig. 1. Inferring class specifications with SPECFUZZER.

to simple assertions (e.g., no direct support for quantification),
or requires the developer to manually extend the assertion
language. GAssert [13] and EvoSpex [10], two more recently
proposed techniques for contract inference, try to address
the expressiveness limitation of Daikon by supporting more
expressive assertion languages, but their respective exten-
sions focus on specific kinds of constraints: GAssert focuses
on logical/arithmetic constraints (without quantification) and
EvoSpex focuses on object navigation constraints (supporting
simple logical and arithmetic operators). Moreover, as both
techniques are based on evolutionary search, they are difficult
to extend or adapt to support further expressions, as the
evolutionary algorithms are targeted for the specific languages
supported by the corresponding tools.

SPECFUZZER [9] is a tool for generating likely class
specifications, in a way that makes it easier to adapt to different
specification expressions, through the use of fuzzing. As illus-
trated in Figure 1, SPECFUZZER takes as input a target class
and a test suite for the class, and produces a set of properties
that are likely to hold in specific program points of the class,
including class invariants, preconditions, and postconditions.
SPECFUZZER uses grammar-based fuzzing to automatically
generate constraints that can be used as candidate specifica-
tions by an invariant detection tool. Fuzzing [14], traditionally
used to efficiently produce structured random data for testing,
has two key advantages in this context: (1) it eliminates the
need for developers to manually define candidate assertions,
and (2) it enables developers to straightforwardly adapt the
language of assertions by manipulating the fuzzing grammar,
overcoming language limitations of existing approaches.

This paper extends our previous paper [9] by providing
further implementation details of SPECFUZZER, as well as



public class SortedList {
private int elem;
private SortedList next;
private static final int SENTINEL = Integer.MAX_VALUE;

/* Constructors */
public SortedList() { this(SENTINEL, null); }
private SortedList(int elem, SortedList next) {
this.elem = elem;
this.next = next;

}

/* Insert an element in the list */
void insert(int data) {
if (data > elem) {
next.insert(data);

} else {
next = new SortedList(elem, next);
elem = data;

}
}

/* Clear the list */
void clear() {
elem = SENTINEL;
next = null;

}
}

Fig. 2. Class SortedList implementing an ordered list of integers.

instructions on how to use the tool. The source code, data,
evaluation subjects, and demo video are available at:

https://github.com/facumolina/specfuzzer

II. USAGE

The envisioned users of SPECFUZZER are researchers and
Java practitioners who may be in need of obtaining contracts
for a given Java class, either with the aim of analyzing its
behavior or to improve some program analysis task that can
benefit from contracts. SPECFUZZER takes as input a Java
class C, and a test suite Tc for C. As shown in Figure 4,
if a test suite for the given class is absent, one can auto-
matically build one using any automated test generation tool,
such as Randoop [11]. From these two inputs, SPECFUZZER
will use a combination of grammar-based fuzzing, dynamic
invariant detection (e.g,. Daikon [3]), and mutation analysis
(e.g., Major [4]) in order to produce class specifications for
C. SPECFUZZER generates plausible assertions characterizing
properties at different program points in C, including precon-
ditions, postconditions and class invariants.

To better illustrate the use of SPECFUZZER, let us consider
the class SortedList shown in Figure 2, implementing or-
dered lists of integers. The implementation has two instance
fields, elem and next, representing the value of a linked
list node and the reference to the next node, respectively. It
also has a class field (SENTINEL) storing a special value –
the maximum Java integer value– as a mark for the end of
the list. The sentinel should be placed at the end of the list
and should not be repeated. The default constructor creates a
node marking the end of the list. The insert method takes the

// ::: Invariants :::
1- SENTINEL in this.*(next).x
2- all n : this.*(next) : n.x <= n.next.x
// ::: Postconditions - insert(int data) :::
3- some n : this.*(next) : n.x = data
// ::: Postconditions - clear() :::
4- elem = SENTINEL
5- next = null

Fig. 3. Sample invariant and postconditions inferred by SPECFUZZER for
class SortedList.

integer data as parameter and inserts it in its correct sorted
position in the linked list. As it is not possible for any integer
value to be greater than the sentinel, the search is guaranteed
to insert the element before the sentinel. Finally, the clear
method simply resets the list to its initial state.

To infer class specifications, the use of SPECFUZZER in-
volves two steps. The first step performs a setup to set the
conditions for the inference, while the second step is the
actual fuzzing-based inference process. The setup involves the
following tasks: the extraction of a grammar Gc, expressing
the language of candidate assertions for C (that will later on
be used by our assertion fuzzer), the execution of the test
suite Tc to collect the executions traces in the dtrace format1

(used by Daikon [3], the dynamic detector we employ), and
the generation of mutants of the target class C (to be used by
our mutation-based assertion selector) with the Major tool2.
Assuming that the test suite SortedListTest for the class
SortedList is available, we can perform the setup step by
running the following command:
./specfuzzer.sh --setup <cp> SortedList SortedListTest

where <cp> is the target class classpath. All necessary files
will be generated within the working directory, leaving it ready
for the inference step. In this step, SPECFUZZER will first
use the assertion fuzzer to generate candidate assertions to be
fed to the dynamic detector. The dynamic detector will then
be executed to determine which of the candidate assertions
are allegedly valid, i.e., consistent with the behavior observed
in the test suite. Finally, the assertion selector will eliminate
irrelevant and equivalent assertions by using a mechanism
based on mutation analysis and clustering. For our SortedList
class we can simply execute the script with the infer option:
./specfuzzer.sh --infer <cp> SortedList SortedListTest

The execution will summarize the number of candidate
assertions considered, the number of assertions identified by
the dynamic detector, and the number of assertions after
eliminating the irrelevant/redundant ones. All these sets of as-
sertions will be saved in a corresponding file. The actual output
of SPECFUZZER, the set of valid and stronger assertions, will
be saved in a specific file. As an example, a sample of the
inferred specifications for the SortedList class is shown in
Figure 3. Assertions 1 and 2 are class invariants, stating that

1https://plse.cs.washington.edu/daikon/download/doc/daikon.html
2https://mutation-testing.org



Fig. 4. An overview of SPECFUZZER.

the sentinel value is always present in the list (1), and that
the list is always sorted (2). Assertion 3 is a postcondition for
method insert, and states that there is at least one element
in the list that is equal to the value being inserted. Finally,
assertions 4 and 5 are postconditions for method clear, and
state that the list is reset to its initial state.

III. SPECFUZZER

Let us now dive into the implementation details of SPEC-
FUZZER. Figure 4 shows an overview of SPECFUZZER’s archi-
tecture, which involves three main components: the Assertion
Fuzzer, the Invariant Detector, and the Assertion Selector.

A. Assertion Fuzzer

The assertion fuzzer is in charge of generating candidate
assertions for the target class C. Before producing the candi-
dates, it first extracts a grammar Gc, expressing the language
of candidate assertions. To create such grammar, the process
starts with a base grammar B, captured with the ANTLR
parser generator3. Essentially, B defines an assertion language
supporting numerical comparisons, logical expressions, mem-
bership expressions, and quantified expressions. By inspecting
the structure of C (fields declared in C as well as fields
declared in classes reachable from C), the grammar Gc is
obtained by adding or removing symbols and production rules
from B. Intuitively, for every field and navigation expression,
a terminal symbol of the corresponding type is defined.

Once Gc has been produced, the fuzzer uses it to gener-
ate a set Ac of candidate assertions for C. Our fuzzer is
implemented in Java, reproducing a general grammar-based
fuzzer written in Python, taken from The Fuzzing Book [14].
Assertions are produced by generating derivations of Gc –i.e.,
strings in L(Gc)– to obtain the set Ac. Intuitively, the process
begins with the start symbol and keeps expanding non-terminal
symbols until no more non-terminals are present. Through this
derivation mechanism, our fuzzer is able to produce candidate
predicates very efficiently. In our tool, it is configured to
generate up to 2,000 different candidates, but the number of
assertions to generate can be specified. It is worth noting that,
as the grammar Gc has been specifically extracted for the

3https://www.antlr.org/

input class C, all the assertions generated by the fuzzer are
guaranteed to express properties over C.

B. Invariant Detector

The goal of the invariant detector is to determine the
candidate assertions that are allegedly valid, in the sense that
they are consistent with the behavior of C observed according
to the test suite Tc. Our invariant detector is built as an
extension of Daikon4, a state-of-the-art tool for likely invariant
detection [3]. It incorporates into Daikon the ability of inter-
preting and evaluating the candidate assertions produced by
the fuzzer. This is achieved by using a mechanism provided
by Daikon to incorporate new constraints.

The output of the invariant detector is a set Ic ⊆ Ac of
likely invariants, composed of those assertions that were not
falsified by the test suite Tc. Also, each likely invariant is
associated with its corresponding program point (precondition,
postcondition or class invariant).

C. Assertion Selector

The third component of SPECFUZZER is responsible of
obtaining the most relevant assertions from the set Ic of likely
invariants. Starting from Ic, the Invariant Selector produces
a subset Rc ⊆ Ic by discarding weak assertions and then
grouping together similar assertions, so as to take a single
representative from each partition. To achieve this, the selector
takes as input the set Ic of likely invariants, and the set of
mutants of the input class C, generated with Major. Then, to
get the relevant assertions, two main steps are performed:

1) Weak Assertions Detection: The detection of weak as-
sertions is based on the following idea: if a likely invariant
cannot be falsified by any mutant of C, then it is considered
weak, as it not only holds on C, but also on all synthetic buggy
versions of C. Thus, we check the number of mutants that each
assertion kills, and those that are not falsified by any mutant
are discarded as being irrelevant, due to their weakness.

2) Equivalent Assertions Detection: To identify equivalent
assertions, SPECFUZZER uses a notion of equivalence based
on mutation analysis. Two assertions are considered equivalent
if they kill the same set of mutants. By analyzing the set

4http://plse.cs.washington.edu/daikon/



of mutants killed by each assertion, SPECFUZZER is able
to partition the set of likely assertions according to the
mutants they kill. From each partition, SPECFUZZER chooses
a representative assertion, using the following heuristic: the
assertions in each partition are ranked by the number of times
they fail when running the test suite on the mutants (while they
all kill the same mutants, some assertions may fail a greater
number of times, i.e., for more tests in the test suite). The
rationale is that assertions that fail the most represent stronger
properties, and thus they may subsume other assertions in the
partition. The assertions representing each partition are the
ones conforming the set Rc of relevant assertions.

The assertion selector, implemented as a Python script,
works from the output files produced by the invariant detector
(Daikon) and the results of the mutation analysis (performed
with Major). Its output is the final output of SPECFUZZER,
which consists of a file containing the assertions in Rc,
classified according to the program points in which they hold.

IV. EVALUATION

Our previous evaluation of SPECFUZZER [9] is focused on
a direct computation of the precision and recall metrics, using
a dataset of 65 ground truth assertions corresponding to 43
Java methods. From this dataset, our evaluation analyzes three
aspects: the effectiveness of the assertion fuzzer to generate
relevant assertions, the ability of the assertion selector to
discard redundant/irrelevant assertions, and the performance
of SPECFUZZER in comparison with alternative techniques.

Regarding the first two aspects, the assertion fuzzer cor-
rectly generated 40 assertions, representing a 97.5% of the
assertions when considering the subset of the ground truth
that was supported by our tool, and a 61.5% when considering
the entire ground truth. In the case of the assertion selector,
it was able to reduce the number of reported assertions by
∼95%, and only 6 out of the 40 correctly fuzzed assertions
were discarded.

Finally, we performed a comparison with the state-of-the-
art tools GAssert [13] and EvoSpex [10], based on standard
performance metrics: precision, recall and f1-score. While
in terms of precision GAssert and EvoSpex perform better
(mainly due to the incorporation of mechanisms to actively re-
duce the number of false positives), SPECFUZZER outperforms
both tools in terms of recall, being able to discover 52.3%
of the whole ground truth assertions (compared to the 27.6%
and 38.4% that GAssert and EvoSpex discover, respectively).
This recall improvement makes SPECFUZZER more effective
overall, as indicated by a better f1-score over the other tools.

V. CONCLUSION

SPECFUZZER is a tool that automatically infers likely class
specifications of Java classes. It takes as input a Java class and
a test suite for it. Specifications are inferred in the form of
assertions by using a combination of grammar-based fuzzing,
dynamic invariant detection, and mutation analysis, and can
express properties at different program points, including pre-
conditions, postconditions and class invariants. Our previous

evaluation shows that SPECFUZZER has better performance in
comparison with the state-of-the-art techniques. Furthermore,
the use of grammar-based fuzzing enables SPECFUZZER to be
easily adapted to different assertion languages.

REFERENCES

[1] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Alfredo
Ciolek, Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M.
Moscato, Nicolás Rosner, and Ignacio Vissani. Improving test generation
under rich contracts by tight bounds and incremental SAT solving. In
Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22,
2013, pages 21–30. IEEE Computer Society, 2013.

[2] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and
Michael D. Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit testing. In 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2006), 18-22 September 2006, Tokyo, Japan, pages 59–68.
IEEE Computer Society, 2006.

[3] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput. Program.,
69(1-3):35–45, 2007.

[4] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR:
an efficient and extensible tool for mutation analysis in a java compiler.
In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors,
26th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, pages
612–615. IEEE Computer Society, 2011.

[5] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime
assertion checking and formal verification. Sci. Comput. Program., 55(1-
3):185–208, 2005.

[6] Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller. Using contracts
and boolean queries to improve the quality of automatic test generation.
In Yuri Gurevich and Bertrand Meyer, editors, Tests and Proofs - 1st
International Conference, TAP 2007, Zurich, Switzerland, February 12-
13, 2007. Revised Papers, volume 4454 of Lecture Notes in Computer
Science, pages 114–130. Springer, 2007.

[7] Francesco Logozzo and Thomas Ball. Modular and verified automatic
program repair. In Gary T. Leavens and Matthew B. Dwyer, editors,
Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,
2012, pages 133–146. ACM, 2012.

[8] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[9] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. Fuzzing
class specifications. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022, pages 1008–1020. ACM, 2022.

[10] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias.
Evospex: An evolutionary algorithm for learning postconditions. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1223–1235. IEEE, 2021.

[11] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007, pages 75–84. IEEE Computer Society, 2007.

[12] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. IEEE
Trans. Software Eng., 40(5):427–449, 2014.

[13] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè.
Evolutionary improvement of assertion oracles. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, page 1178–1189, New York, NY, USA, 2020. Association for
Computing Machinery.

[14] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and
Christian Holler. The fuzzing book. In The Fuzzing Book. Saarland
University, 2019. Retrieved 2019-09-09 16:42:54+02:00.


